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What Cost “Noise”?

If we earn 50 percent this year and then lose 50
percent next year, are we back where we started? Of
course not. We are down 25 percent. This trivial
truism has many implications, some simple and
some profound. The “cost” of risk is proportional to
the variance of returns: If we double our volatility,
and so quadruple our variance, we need four times
the skill to merely recover the costs of the risks that
we are taking. If we double our risk, we must be
more skillful; we must have more wins—and larger
wins—to earn profits.! This challenge is the central
peril of leverage and the central benefit of uncorre-
lated diversification. The arithmetic is a simple, yet
core, element of the CFA Program curriculum.

The same arithmetic holds true in the cost of
“noise” in market pricing (Treynor 2005). We know
that, after the portion of the return that is attribut-
able to beta on market movements is subtracted,
the residual return on the typical stock has an
annual standard deviation of 3040 percent. This
“idiosyncratic risk” includes both new develop-
ments specific to the company that actually change
its investment value—relating to production, mar-
keting, research, key personnel—and temporary
departures from the unknowable “true fair value”
of the company, or noise. Some stocks have much
less idiosyncratic risk than 30-40 percent, some
vastly more.

If all true fair values were fixed, so that all of
this volatility were mere noise, the consequences
for capitalization-weighted portfolios would be

Editor’s Note: I am indebted to Jack Treynor for his detailed
editorial comments and suggestions on this subject and to
Fischer Black, whose 1986 presidential address to the American
Finance Association, called “Noise,” suggested that much of
the trading that takes place in the capital markets is merely
noise trading—based on presumed information that is already
reflected in asset prices. Here, however, we are not exploring
the implications of trading on noise but the implications of
noise on the market-clearing portfolio.

horrific. One year in six, they would overweight
the most overvalued stocks by an average of 40
percent more in their up years than their down
years and, reciprocally, underweight the most
undervalued by 40 percent more in their down
years than their up years.?

Benjamin Graham was fond of saying that in
the short run the market is a voting machine but in
the long run it is a weighing machine. The volatility
tied to the noisy short-term departures from the
rational quest for true fair value dissipates in the
very long run and thus has little impact on annual-
ized returns relative to the constant search for true
fair value. But if merely one-eighth of the idiosyn-
cratic volatility is noise, rather than sensible reac-
tion to the changing fundamentals that set the
ultimate, unknowable true fair value, then we will
see 14 percent noise in pricing.>

This result would cut the return on any port-
folio that tracks this noise—as if it were reality—
by 2 percent a year. Cap-weighted “market portfo-
lios” track prices, so they may be pulled down by
2 percent a year as a consequence of simple noise
in market pricing. Even if the noise is in the oppo-
site direction, there is no way for this noise to boost
returns for the cap-weighted market portfolio.
Underpricing is just as damaging to the return on
a cap-weighted portfolio as overpricing. Mispric-
ing relative to an unknowable true fair value is still
mispricing. This noise is pure loss.

What about Market Efficiency?

How can this effect be true? In an efficient market,
isn’t the market-clearing portfolio assuredly effi-
cient? No! Even the most fervent advocate of effi-
cient markets will readily acknowledge that market
prices do not match true fair values, the net present
value of all future cash flows produced by an
investment. We have no way of knowing the true
fair values, but without doubt, market prices differ
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wildly from these hypothetical values. Even in a
market efficient enough to defeat every active man-
ager’s attempts at information trading or bargain
hunting, the share price consists of the true fair
value plus a substantial error term.

Statisticians recognize that these error terms
magnify the tails of a sample distribution. If a coin
lands “heads” three times, a statistician will not say
that that the observed mean is 100 percent heads,
that the observed standard deviation is 0, and
therefore, that the odds of heads must assuredly be
100 percent and the coin must have two heads.
They have simple tools to convert distorted sample
statistics into maximum-likelihood estimates.

In finance, we see the same sorts of adjust-
ments. Robert Engle’s GARCH (generalized autore-
gressive conditional heteroscedasticity) estimation
of risk truncates the most recent sample standard
deviation toward a longer-horizon historical mean,
sometimes with a further truncation by way of
another technique known as a “Bayesian adjust-
ment.”* Such adjustments can be seen in simple
tools to adjust the mean, the variance, the skewness,
and the kurtosis of a distribution of returns, to
dampen the effects of the errors in the outliers. For
example, Harry Markowitz and others have shown
that the sample kurtosis in a return distribution is
so unreliable that an infinite kurtosis has a higher
likelihood of being accurate than the observed kur-
tosis (Fabozzi, Markowitz, and Kostovetsky 1987).
Such adjustments can be seen in the betas from
Elroy Dimson (1979), who recognized that the best

estimate of the true beta combines the measured
beta with leads and lags truncated toward the over-
all market mean of 1.0.

The same problem afflicts capitalization—but
no one has seen fit to measure its effect or to correct
it. Capitalization has never been examined from the
perspective of the statistical properties of its “error
term.” Consider the company that deserves to be
considered the largest on the basis of the unknow-
able future cash flows that it will produce. Chances
are that it is a well-recognized company and that it
has a large market capitalization, whether the pric-
ing error on this company is positive or negative.
But if it does not have a positive pricing error, isn’t
it highly likely that some stock with (1) lower true
fair value and (2) positive error will have a larger
market capitalization? So, even in a truly efficient
market for the pricing of individual stocks, the
largest-cap stock is likely to have arrived at the top
of the heap at least partly because it has a positive
error term large enough to put the stock at the very
top of the heap. In short, assuming the errors are
themselves random, the top-ranked stock is consid-
erably more likely to have a positive error than a
negative error.

How Do the Biggest Stocks Perform?

Table 1 allows examination of this hypothesis from
an empirical perspective. Panel A indicates that,
based on history, the largest-cap stock on 1 January
of each year has a 38 percent chance of outpacing

Table 1. How Have the Largest-Cap Stocks Fared against the S&P 500

How Often Did #1 Stock Beat Average? What Percent of Top 10 Beat Average?
Statistic 1 Year 3 Years 5 Years 10 Years 1 Year 3 Years 5 Years 10 Years
A. What percent of the largest-cap stocks added value vs. the average stock?
1926-2004
Average 38% 30% 25% 24% 45% 41% 38% 32%
Standard deviation 49% 46% 44% 43% 27% 26% 25% 25%
Adjusted t-statistic 2.2 -3.1 -3.0 24 -2.9 -2.8 -3.0 -3.2
1964-2004
Average 34% 26% 19% 16% 40% 37% 32% 29%
Standard deviation 48% 44% 40% 37% 26% 25% 22% 22%
Adjusted t-statistic 2.1 2.8 -2.9 2.6 5.4 —4.2 —4.8 -3.9
B. What magnitude of relative performance did the largest-cap stocks deliver vs. the average stock?
1926-2004
Average relative return —7.1% —5.4% —5.3% -5.0% —2.9% -3.3% -3.2% -3.0%
Standard deviation 2.7% 1.6% 1.4% 1.4%
Adjusted t-statistic -3.5 -3.9 -3.2 2.2
1964-2004
Average relative return —9.3% —6.7% —6.7% —6.3% -3.6% —4.6% —4.3% -3.6%
Standard deviation 4.4% 2.0% 1.7% 1.9%
Adjusted t-statistic -2.6 —4.2 -3.7 -1.9
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the average stock in the S&P 500 Index during the
year and only a 24 percent chance over 10 years.
The largest stock delivers a diminishing “win”
over the average stock as time spans increase. The
t-statistics, adjusted for overlapping samples,
range from —2.2 to -3.1. Because of the growing
reliance on hugging our benchmarks and the flow
toward indexing, the statistics for the last 40 years,
from 1964-2004, are even worse.

Moreover, this result is not unique to the single
largest-cap company. The top-10 companies exhibit
the same pattern, albeit in a less pronounced way.
Although 45 percent of the top-10 samples managed
to outperform over a single year, only 32 percent
outperformed over the next 10. The 79 single-year
results for the top stock might be dismissed as data
mining, but doing so is tough with 790 (largely
independent) results for the top-10 stocks. The like-
lihood of a —2.9 t-statistic with 790 samples is barely
more than one in a thousand.

Furthermore, the magnitude of underperfor-
mance by the largest-cap stock is huge; the average
shortfall over the subsequent year is 7.1 percent,
expanding to a startling 5.0 percenta year at 10 years,
which compounds to a 40 percent performance
shortfall relative to the average stock in the S&P 500
in 10 years. Results for the 10 largest stocks are,
again, milder—but more statistically significant—
than the results for the top-ranked stock. The com-
pounded 10-year shortfall is 26 percent. Even with
the problem of overlapping samples, we cannot
easily dismiss the statistical significance of this
result. And, again, because of the growing popular-
ity of indexes and indexing, the results are worse for
the past 40 years.

Does Capitalization Error Explain Other
“Anomalies”?
If a company has a high or low true fair value, its
error term is approximately symmetrical, within a
rather wide range. What can we say about the impli-
cations of this circumstance for the capital markets?
First, there will be true fair values that are high
multiples of earnings, book values, dividends, and
so forth, and true fair values that are low multiples
of fundamentals. If we assume that the market is
efficient with regard to the pricing of growth and
value stocks, then the errors in pricing these stocks
are also symmetrical. These error terms will magnify
the dispersion, creating more high-multiple growth
stocks and more low-multiple value stocks than the
true fair values would justify. The “growth” stocks,
which result from an error, will provide a subpar
internal rate of return, and the “value” stocks, which
result from an error, will have a superior IRR. In this
world, value beats growth, on average, over time.
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Second, assume that the market is efficient with
regard to large and small companies—that is,
regardless of company size (ot capitalization), com-
panies have a symmetrical error term. In this case,
the error terms will magnify the dispersion, creating
more large-cap stocks and more small-cap stocks
than the true fair value would justify. The “large-cap
stocks,” which are the result of an error, will have a
subpar IRR, and the “small-cap stocks,” which are
the result of an error, will have a superior IRR. In
this world, small beats large, on average, over time.

This effect also drives the results in Table 1.
Whereas the 500th largest stock should have a rea-
sonably symmetrical pricing error, with a true fair
value equally higher or lower than its market price,
the very top stocks are likely—by virtue of being
the largest stocks—to be the beneficiaries of more
positive error than negative error. So, the (some-
times erroneously) largest-cap stocks will tend to
have a lower IRR than the average stock, just as
Table 1 suggests. Therefore, capitalization weighting
should underperform equal weighting, on average,
over time.

A Steady State of Errors

Now, let’s assume that the average scale of the error
term is reasonably stable over time but that the
market is constantly hunting for the true fair value;
that is, errors that become known diminish but the
market replaces them with new unknown errors—
a process that some might term “noise.” This cir-
cumstance is a steady-state world, in which com-
panies with large errors, whether positive or
negative, are more likely to move toward true fair
value than to undergo expansion of the existing
error but in which average error across all stocks
remains steady over time.

What is the consequence of the steady-state
world? One is long-horizon mean reversion in
returns. Another is that the relative returns of large-
versus-small stocks and value-versus-growth stocks
are magnified. The quest for true fair value concen-
trates the long-term IRR differences into the near
future rather than spreading them out uniformly
over time. The much-studied factor returns are mag-
nified, as a joint function of the IRR differences
between the overvalued and undervalued assets
and the pace at which these errors are corrected.

Suppose these assumptions are wrong and this
noise introduces neither a structural inefficiency in
the cap-weighted indexes nor some of the market
anomalies. For these circumstances to be true, large
companies and companies with above-average
future growth prospects would need a downward
bias in their pricing errors and small companies
and slow-growth companies would need an
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upward bias in theirs. If these asymmetries are just
sufficient to counter the IRR implications of large-
versus-small and of value-versus-growth, why,
then, we have an inefficient market in the pricing
of individual stocks.

These same results should affect other mar-
kets, such as bonds, country allocations in interna-
tional portfolios, and niche categories, such as
convertible bonds. An efficient market in the pricing
of individual assets, with pricing errors relative to true
fair value, requires an inefficient market in the cap-
weighted indexes—and vice versa.

Conclusion

The cost of noise trading and the structural bias in
our cap-weighted benchmarks may be a major, even
primary, driver of the historical return advantage
associated with equal weighting, with value stocks,
with small-cap stocks, with GDP weighting in inter-
national portfolios, and with rebalancing. Does an
equally weighted portfolio earn a positive CAPM
alpha by capturing the Fama-French value/
distress and size/liquidity factors? Or are the
Fama-French value/distress and size/liquidity

factors merely proxying for the structural incom-
patibility between the market-clearing cap-
weighted indexes and mean-variance efficiency
and for the impact of noise trading?®

Should we, then, not hold General Electric, Citi-
corp, ExxonMobil, or Microsoft—simply because
they are the four largest-cap stocks in the market?
Of course not! But we should not assume that, even
in an efficient market in the pricing of individual
stocks, we have an efficient market for the cap-
weighted indexes. We should scrutinize the large-
cap stocks carefully to make sure that we are not
buying simply because the herd is buying.

Questions about the effects of noise trading
and measuring size by market capitalization pro-
vide fertile grounds for investigation, and the
answers may have important implications for the
$20 trillion in assets that are managed to or are
benchmarked against the cap-weighted bench-
marks. The answers will be far from suggesting a
new equilibrium theory to improve on the CAPM.
But they will suggest ways to profit from the struc-
tural inefficiencies of a cap-weighted market-
clearing portfolio.

Notes

1. Specifically, the optimal holding weight for the ith security,
h;, is determined by its idiosyncratic risk-adjusted alpha, u;
that is, hi; = u;/oi%. To justify the same portfolio allocation,
a stock with twice the idiosyncratic “volatility” must offer
four times the alpha.

2. This conclusion assumes that the market’s pricing errors are
normally distributed.

3. Forty percent volatility is sixteen percent variance, one-
eighth of which is two percent variance, corresponding to
fourteen percent noise.

4. Engle won the 2003 Nobel Prize for the GARCH concept.

5. Table 2, showing the experience of the largest and the 10
largest stocks over the subsequent 1- to 10-year spans, is

available online with this article at www.cfapubs.org/faj/
issues/v61n2/toc.html.

6. Jack Treynor (correspondence 2004) supports the latter
view, with a further suggestion that “Fama-French value/
distress proxies for investment in brand franchise, which
accountants don’t capitalize and which has a duration so
much shorter than that of plant, which accountants do
capitalize, that it is more sensitive to central bank shifts
between ease and restraint. Size/liquidity is sensitive to the
market price of liquidity (the nominal overnight rate, which
tracks the velocity of money).”
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