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10C h a p t e r  

Cyclicality in Stock Market 
Volatility and Optimal 
Portfolio Allocation

Jason C. Hsu and Feifei Li*

10.1	 Cyclicality in Market Volatility
In standard finance applications, asset class volatilities are usu-
ally assumed to be constant over time for simplicity. For example, 
Markowitz’s mean-variance optimization requires that asset class 
volatilities are known and constant over the holding horizon. While 
this simplifying assumption reduces the complexity of the models 
and their calculations, it could also lead to suboptimal portfolio and 
risk management solutions. If equity market volatility is time vary-
ing and is negatively correlated with equity market returns, ignoring 

*	 ἀ e authors acknowledge Micah Allred, Vitali Kalesnik, and Lillian Wu for their assistance 
in completing this chapter.
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196 <  Jason C. Hsu and Feifei Li

this countercyclicality could lead to excess allocation to stocks when 
forward-looking risk for stocks is high. Furthermore, if equity mar-
ket volatility is positively correlated with the volatilities of other asset 
classes, ignoring this correlation would again lead to excess allocation 
to risky assets.

In Table 10.1, we show the U.S equity market volatility in an average 
bull market versus an average bear market. We use a classic bull/bear mar-
ket definition, where a bull market is defined as a period of general price 
appreciation, during which the cumulative market return exceeds 20%. 
A bear market, by contrast, is a period of price decline, during which the 
cumulative market negative return exceeds –20%. For simplicity, the mar-
ket is classified to be in either a bull or bear market phase. Additionally, we 
show the volatility of other mainstream asset classes over the same equity 
market cycles. Furthermore, to illustrate the robustness of the finding, we 
also show, in Table 10.2, the volatilities of these asset classes in different 
phases of the business cycle (expansion versus recession). We employ the 
National Bureau of Economic Research (NBER) definitions for expan-
sions and recessions, which uses GDP growth/decline and other macro-
economic factors to classify business cycles.

Notice that equity market volatility is significantly higher in bear mar-
kets and recessions. ἀ e increase in volatility in down/contracting mar-
kets can be attributed to a variety of reasons. Down/contracting markets 
may be triggered by instability in the macroeconomy. Under this assump-
tion, down/contracting markets are likely to be times where shocks to the 
productive factors in the economy are more severe and more frequent 

Table 10.1  Asset Class Volatilities over Equity Bull/Bear Market Cycles

Asset Class Volatility (ann.) Bull Bear
U.S. equities (S&P 500) 13.33% 17.13%
International equities (MSCI EAFE) 15.54% 16.36%
Bond (Lehman Agg) 5.57% 6.92%
Commodities (DJ AIG) 11.76% 13.83%
Real estate (FTSE NAREIT) 13.01% 15.60%

Asset Class Return (ann.) Bull    Bear
U.S. equities (S&P 500) 21.09% –19.09%
International equities (MSCI EAFE) 20.45% –15.96%
Bond (Lehman Agg) 8.26% 11.29%
Commodities (DJ AIG) 5.14% –0.69%
Real estate (FTSE NAREIT) 16.57% 2.47%

 

K10001.indb   196 2/27/09   10:26:25 AM



Cyclicality in Stock Market Volatility and Optimal Portfolio Allocation <  197

than usual. In down/contracting markets, leveraged investments are 
likely to face margin calls, which increase liquidity-driven asset sale; these 
liquidating transactions tend to induce additional price volatility. Lastly, 
market-making agents and noise traders who engage in market liquid-
ity provision, and who trade against informed flows, are likely to become 
more risk averse in down/contracting markets. In these markets, where 
market participants have experienced wealth decline, their ability to bear 
risks declines as a result (their local risk aversion increases).

From Figure 10.1, we observe that asset class volatilities appear to co-
move over time, suggesting that common macro factors may drive volatil-
ities for various risky assets. Specifically, we observe from Table 10.1 that 
the volatilities of other risky asset classes seem to also increase noticeably 
during equity bear markets. ἀ is increase in volatility suggests that the 

Table 10.2  Asset Class Volatilities over NBER Expansion/Recession Cycles

Asset Class Volatility (ann.) Expansion            Recession
U.S. equities (S&P 500) 14.06% 19.00%
International equities (MSCI EAFE) 15.08% 23.24%
Bond (Lehman Agg) 4.84% 10.96%
Commodities (DJ AIG) 11.84% 13.83%
Real estate (FTSE NAREIT) 12.80% 18.84%

Asset Class Return (ann.) Expansion           Recession
U.S. equities (S&P 500) 14.04% 11.59%
International equities (MSCI EAFE) 15.85% –2.16%
Bond (Lehman Agg) 7.55% 20.07%
Commodities (DJ AIG) 5.82% –9.46%
Real estate (FTSE NAREIT) 13.41% 22.25%

 
Note:  A recession is a significant decline in economic activity spread across the economy, last-

ing more than a few months, normally visible in real GDP, real income, employment, 
industrial production, and wholesale-retail sales. A recession begins just after the econ-
omy reaches a peak of activity and  ends as the economy reaches its trough. Between 
trough and peak, the economy is in an expansion. Expansion is the normal state of the 
economy; most recessions are brief, and they have been rare in recent decades. ἀ e 
National Bureau’s Business Cycle Dating Committee places particular emphasis on 
two monthly measures of activity across the entire economy: (1) personal income less 
transfer payments, in real terms, and (2) employment. In addition, the committee 
refers to two indicators with coverage primarily of manufacturing and goods:  
(3) industrial production and (4) the volume of sales of the manufacturing and whole-
sale-retail sectors adjusted for price changes. ἀ e committee also looks at monthly 
estimates of real GDP such as those prepared by Macroeconomic Advisers (see http://
www.macroadvisers.com). Although these indicators are the most important mea-
sures considered by the NBER in developing its business cycle chronology, there is no 
fixed rule about which other measures contribute information to the process.
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increased shocks to equity valuation often spill over to other markets, and 
that liquidity-driven selling and the reduction in liquidity provision in the 
capital market are often systemic across various asset classes. Not surpris-
ingly, equity bear markets and recessions can often have significant over-
laps and have similar influences on asset return characteristics.

In this chapter, we argue that the countercyclical nature of equity market 
volatility (high volatility in down markets), combined with positive cor-
relations between asset class volatilities, has a significant impact on opti-
mal portfolio allocation. We first present a simple model of time-varying 
asset class volatilities. We then illustrate how to calibrate the model and 
integrate the method with the classic mean-variance approach. We com-
pare our proposed optimal portfolio solution to the standard static port-
folio solution where the time-varying volatility is ignored and argue that a 
dynamic mean-variance approach is superior to the standard approach.

10.2	 Literature Review on Market Volatility
Before we introduce our model on cyclical equity market volatility, we 
explore the literature on market volatility and examine the drivers for the 
level and variation for market variance. Using a simple present value model, 
Shiller (1981) finds that the level of stock market volatility is too high rela-
tive to the variation in the underlying micro and macro fundamentals. 
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Figure 10.1  Asset class rolling 36-month volatilities.
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Specifically, he finds that the changes in real dividends and real interest 
rates cannot explain the level of market volatility. Studies that examine 
the variation in market volatility also conclude that standard macro fac-
tors and corporate characteristics cannot explain the time-varying nature 
of equity volatility. Specifically, Officer (1973), Black (1976), and Christie 
(1982) find that financial leverage only weakly explains the variation in 
market volatility. Schwert (1989) finds that standard macroeconomic vari-
ables, such as inflation, money growth, and industrial production, also do 
not sufficiently explain the variation in the market volatility. ἀ erefore, 
nonfundamentally based volatility drivers likely exist and may have better 
explanatory powers.

Behavioral finance literature points to information herding (cascad-
ing), noise trading, and liquidity-driven transactions as potential rea-
sons for the higher level of market volatility, relative to the volatility in 
the underlying information flow. ἀ eoretical work by Banerjee (1992) and 
Bikhchandani et al. (1992) suggests that information cascade can lead to 
price overshooting, which would inject additional volatility, in excess of  
the contribution from the existing volatility drivers. Campbell and Kyle 
(1993) and DeLong et al. (1990) study the effect of noninformed trading 
(uninformed speculation by noise trader or portfolio trading driven by 
liquidity shocks to the investor). ἀ ey suggest that these uninformed trad-
ing activities create a new source of shocks to prices. ἀ is additionally 
creates excess equity market volatility.

ἀ e return predictability literature and the value premium literature 
offer rational pricing models as well as behavioral explanations for time-
varying market volatility. Ferson and Harvey (1991) find that expected stock 
market return and volatility vary over time in a predictable way. Lettau and 
Ludvigson (2001), Chordia and Shivakumar (2002), and Zhang (2005) offer 
models that relate variation in aggregate risk aversion to decline in aggre-
gate wealth. Intuitively, a period of negative returns driven by shocks to fun-
damentals will lead to aggregate wealth destruction; this can increase the 
aggregate risk aversion, which further decreases prices today and increases 
forward-looking return and increases volatility contemporaneously.

Equilibrium models of cyclical volatility are often difficult to apply; 
in addition, they often do not match well to data or offer insufficient 
degrees of freedom for empirical calibration. For this reason, statisti-
cal models are often relied upon for modeling stochastic volatility; these 
statistical models can be used with great flexibility for asset pricing or 
asset allocation exercises. Various statistical volatility models have been 
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developed specifically to capture and measure time-varying volatilities. 
Engle (1982) and Bollerslev (1986) provide the basic framework for such 
modeling with the ARCH/GARCH process (autoregressive conditional 
heteroskedasticity/generalized autoregressive conditional heteroskedas-
ticity). ἀ e technique has been applied widely to the estimation of the 
time-varying equity market volatility. Recent researches have proposed 
new techniques that could improve forecasting power through the usage 
of high-frequency tick-by-tick data. Anderson et al. (2001, 2003, 2005) 
use 5-minute realized volatility with a vector autoregessive model of log 
standard deviation, which eliminates much of the serial dependence in 
the volatilities and appears to outperform the traditional ARCH/GARCH 
specifications. Ghysels et al. (2006) also use higher-frequency data but 
propose a regression model using a beta weighting function to estimate 
and forecast volatility. ἀ eir model appears to be easier to parameterize 
and provides better forecasts against traditional ARCH/GARCH mod-
els. Vasilellis and Meade (1996) show that the implied stock volatil-
ity from option prices is an efficient forecast for future volatility. Poon 
and Granger (2003, 2005) show that option-implied volatility provides 
the best forecast for future volatility; they used option-implied volatility 
data from the last 20 years and compare against volatility models such 
as time-weighted volatility, rolling volatility, ARCH/GARCH, and other 
stochastic volatility models.

So why should we care about time-varying market volatility? If we do 
not properly characterize the time-varying nature of volatility and covari-
ance for the various capital markets we invest in, our asset pricing model 
would be flawed, our portfolio allocation would be suboptimal, and our ex 
ante risk assessment would be incorrect. Bentz (2003) and Bollerslev et al. 
(1988) show that using a time-varying covariance estimate (beta estimate) 
can improve the application of the capital asset pricing model for fore-
casting returns. Horasanh and Fidan (2007) show that applying GARCH 
estimates for volatility can improve portfolio allocation efficiency. Blake 
and Timmermann (2002) find evidence that some pension funds seem to 
vary asset allocation to take advantage of time-varying asset class vola-
tilities and risk premia. Myers (1991) finds that using GARCH models 
can improve the effectiveness of hedging fixed-income exposure relative 
to traditional regression approach with constant variance. Baillie and 
Myers (1991) extend the study into the commodities market and find that 
GARCH-based hedging provides a substantial improvement in risk reduc-
tion effectiveness.
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10.3	 A Simple Model of Time-Varying Volatility
We introduce in this section a simple model that captures the counter-
cyclicality nature of asset class volatilities. ἀ is approach is more intui-
tive and more tractable than other models of time-varying volatilities and 
leads to greater intuition and ease of calibration. ἀ e world is assumed to 
follow a two-state, two-stage Markov chain. ἀ e world can either be in a 
bull market state (U for upmarkets) or in a bear market state (D for down-
markets) at time t. For example, if we are currently in a bull market, for  
the next period, the economy can either transition into a bear market with 
the transition probability PU D→  or remain in the current bull state with 
probability PU U→ = 1 - PU D→ . If we transition to the bear market state at 
time t + 1, then for t + 2, we could transition to the bull market state with 
probability PD U→  or remain in the bear market state with probability 1 - 
PD U→ . Figure 10.2 illustrates graphically this Markov process.

Following the empirical results shown in Tables 10.1 and 10.2, the bull 
market state (U) is characterized by lower volatilities and higher returns 
for the asset classes, while the bear market state (D) is characterized by 
high volatilities and lower returns. We let ΣU  denote the vector of bull 
market volatilities {σ σ σ1 2

U U
k
U, , , } and ΣD  denote the vector of bear mar-

ket volatilities {σ σ σ1 2
D D

k
D, , , }; note that we assume an investment oppor-

tunity set with k assets. Similarly, μU  and μD  denote the vector of bull 
and bear market mean returns {μ μ μ1 2

U U
k
U, , , } and {μ μ μ1 2

D D
k
D, , , }.

Bull

Bear

Current state

Time 0 Time 1

Future state

PBull−>Bear

PBull−>Bear

PBull−>Bull

PBull−>Bull is the probability of starting in a bull market state and remaining in
the bull market state next period.

is the probability of starting in a bull market state and transitioning
to the bear market state next period.

or

Figure 10.2  A Markov two-state (bull/bear market) transition model.
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10.3.1	Model Parameter Calibration

We now illustrate how to calibrate this Markov model to data. First, we 
classify our time period into equity bull and bear market periods (using 
the common definitions of bull and bear markets presented earlier).  
For the data time span T, we decompose T into nonoverlapping bull/bear  
time segments as illustrated in Figure  10.3. We denote the bull market 
time segments as {T T TU U

m
U

1 2, , , } and the bear market time segments as  
{T T TD D

n
D

1 2, , , }, where T T Ti
m

i
U

i
n

i
D= += =Σ Σ1 1 . ἀ e average duration for an  

equity bull market is empirically estimated by tU m i
m

i
UT= =

1
1Σ , and the 

average duration for a bear market is tD n i
n

i
DT= =

1
1Σ . Using S&P 500 return 

data from January 1976 through June 2008, we have encountered four 
bear market cycles, each averaging about 17 months, whereas the four bull 
market cycles average about 81 months each.*

To compute the Markov transition probabilities PU D→  and PD U→ ,  
we make use of the derived relationships, where PU U U→ = -1 1

t  with 

*	 Certainly, the more data that are used in the estimation, the more reliable and robust the 
estimation. Because there have not been many bull/bear market cycles, the estimation error 
will always be a concern when applying this calibration exercise.

1

10

100
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1987 Sep-
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1980 Dec-
1982 Jul

D denotes a bear (down) market cycle
U denotes a bull (up) market cycle

τ3
D =

τ4
U

τ3
Uτ2

U

τ2
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τ1
U

τ1
D =

Figure 10.3  Identifying bear market periods (January 1979–December 
2007).
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P PU D U U→ →= -1  and PD D D→ = -1 1
t  with P PD U D D→ →= -1  (see Meyn and 

Tweedie (1993) for a complete theoretical treatment on Markov models). 
Again, using data from 1976 through June 2007, conditioning on start-
ing in a bull market, the probability for transitioning to a bear market 
by next year is PU D→ =15%, and the probability for remaining in a bull 
market next year is PU U→ = 85% . Similarly, conditioning on starting in a 
bear market, the probability for remaining in a bear market next year is 
PD D→ = 27%, and the probability for transitioning to a bull market next 
year is PD U→ = 73% .

For each asset class, the time series of returns r = {r r rT1 2, ,..., } is divided into 
bull market returns r r rU

U U= { , , }1 2   and bear market returns r r rD
D D= { , , }1 2  .  

ἀ e return volatility and expected return corresponding to the bull and 
bear market cycles are then estimated by the subsample volatility and aver-
age return. Using S&P 500 data from 1976 through 2007, the bull market 
volatility is 13% while the bear market volatility is 17%. ἀ e bull market 
average return is 21% versus -19% for the bear market average.

10.4	 Optimal Portfolio Allocation
With the economy characterized and calibrated as a two-state Markov 
chain, we are now ready to examine the optimal portfolio exercise. Like 
the classic Markowitz portfolio analysis, we are seeking a set of portfo-
lio weights that maximize the portfolio expected return given a volatil-
ity constraint. ἀ e portfolio optimization requires that we supply the 
expected returns for all of the assets in the investment opportunity set and 
the covariance matrix governing returns. In the context of our two-state 
Markov model, first, we must determine the current state of the economy 
before we can compute these asset return moments. ἀ is can be a difficult 
exercise, as we need to identify whether we are currently in a bull or bear 
market state; there may be no clear evidence suggesting a bull or bear mar-
ket condition. In the next section, we discuss how to refine the model to 
overcome this uncertainty in our knowledge regarding the current state of 
the economy. We continue with the basic model for the time being.

Next, we need to use the calibrated model parameters from the previ-
ous section to compute the moments required for mean-variance optimi-
zation. Again, recall that we have k assets. In our simple model, we have 
two possible future states with conditional probability PS U->  of transition-
ing to a bull market from the current state S and PS D->  of transitioning to 
a bear market. ἀ e expected return vector and covariance matrix depends 
upon the future regime. Let μU  and μD  each be a 1× k  vector of expected 

K10001.indb   203 2/27/09   10:26:39 AM



204 <  Jason C. Hsu and Feifei Li

returns, and WU  and WD be the covariance matrix for the bull and bear 
states, respectively. ἀ e vector of expected asset returns given that we are 
in state S is μ μ μ( )S PS U U S D D= +-> ->P .

ἀ e derivation of the covariance term is a bit more complex. We are 
interested in computing W = - ′ -( ) [( ) ( )| ]S E r r Sμ μ . From the law of iter-
ated expectations:

	 E r r S[( ) ( )| ]- ′ -μ μ

	 = P E r r U P E r r DS U S D-> ->- ′ - + - ′ -[( ) ( )| ] [( ) ( )| ]μ μ μ μ

	 = P E r r U P E r rS U u u S D D D-> ->- ′ - + - ′ -[( ) ( )| ] [( ) (μ μ μ μ))| ]D

To simplify the above expression, we note

	 E r r SU U[( ) ( )| ]- ′ -μ μ

	 = E r P r PU U S D U D U U S D U D[( ( )) ( ( ))- + - ′ - + --> ->μ μ μ μ μ μ ]]

	 = WU S D U D U DP+ - ′ -->
2 ( ) ( )μ μ μ μ

ἀ e covariance matrix then becomes:

	 W W( ) ( ) ( )S P PS U U S D U D U D= + - ′ - -> ->
2 μ μ μ μ

	        + + - ′ - -> ->P PS D D S U D U D UW 2 ( ) ( )μ μ μ μ

ἀ e mean-variance optimal portfolio is then determined by the standard 
Markowitz optimal portfolio solution taking μ( )S  and W( )S  as inputs. 
Since the expected returns and volatilities are assumed to be time varying, 
the portfolio optimization exercise needs to be revisited frequently as the 
current state of the market changes. ἀ e resulting mean-variance optimal 
portfolio is then state dependent rather than static (as in the traditional 
solution). In particular, when the economy transitions from a bull market 
phase with low volatility to a bear market phase with high volatility, the 
optimal portfolio will also change and will shift to reduce risk in the bear 
market state.

10.5	 Simple Model Extension
We noted previously that it may be difficult to determine exactly the 
current state of the economy. Generally, one does not know with a high 
degree of certainty whether one is in a bull market or bear market state 
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(until after the market has fully run its course, which would eliminate the 
information advantage of this approach).

ἀ e lack of perfect knowledge about the current state means that we 
need to adjust for this uncertainty in our calculation. Hsu and Kalesnik 
(2008) show the benefits of properly adjusting for model uncertainty in 
portfolio construction and risk management. Suppose that there is a prob-
ability PU that we are in a bull market environment, and P PD U= -1  that we 
are in a bear market environment. ἀ ese probabilities will likely depend 
on a set of macroeconomic observables; as the macro variables change over 
time, the probabilities will also shift. ἀ e computation of the asset class 
return moments becomes more involved now; first, we need to repeat the 
exercise described in the last section for the bull and bear market states 
independently. ἀ en we formulate a model for characterizing PU  and PD.  
ἀ e uncertainty-adjusted moments for the mean-variance optimization 
are then computed as μ μ μ= +P U P DU D( ) ( ) and W W W= +P U P DU D( ) ( ). 
Finally, the mean-variance optimal portfolio is determined by the stan-
dard Markowitz optimal portfolio solution.

Since the probabilities PU and PD change in response to the changes 
in the macroeconomy, the optimal portfolio also changes with observed 
changes in the macro variables. As we observe signs that suggest greater 
likelihood that we have entered a bear market, PD  will increase and the 
optimal portfolio will take on a lower risk posture given the potentially 
higher volatility and lower forward returns.

10.6	 Conclusion
Equity market volatility is time varying, as is the equity risk premium. 
Additionally, other risky asset volatilities appear to also be time varying 
and positively correlated with equity market volatility. Specifically, we find 
that volatilities for various risky asset classes tend to be low in equity bull 
markets and high in equity bear markets. Capturing this time-varying 
characteristic of joint asset class volatilities is important in order to prop-
erly execute mean-variance portfolio optimization.

We introduce in this chapter a simple and intuitive model of time- 
varying volatility and risk premia using the Markov state switching 
modeling technique. In our simple model, the state of economy switches 
between bull and bear markets. Asset classes have distinct volatility and 
risk premium characteristics in the two states of the market. By properly 
formulating the conditional moments, the traditional mean-variance 
optimization becomes a conditional optimization, and the traditional 
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static optimal portfolio solution becomes a dynamic one. ἀ is results in a 
more efficient asset allocation, which takes advantage of the time-varying 
nature of market risk characteristics.

Applying this simple modeling technique improves portfolio charac-
teristics over time. In the traditional constant volatility and risk premium 
model, optimal portfolio allocation remains constant over time. ἀ e state 
switching modeling approach has significant advantages when market 
volatilities and risk premia are time varying. Specifically, when we are in a 
state of bull equity market, where volatility has been low, properly assess-
ing the probability for transitioning into a bear equity market, where the 
volatility would be substantially higher, would lead to a risk reduction 
portfolio. Reciprocally, in a bear market state, this approach would sug-
gest greater risk taking. Relative to classic constant volatility models and 
static portfolio solutions, the time-varying approach with its associated 
dynamic optimal portfolio solution leads to better long-term portfolio 
efficiency and therefore a higher portfolio Sharpe ratio.
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