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NOISE, CAPM AND THE SIZE AND VALUE EFFECTS
Robert Arnotta and Jason Hsub,∗

We model a continuous time one factor economy where stock prices are noisy proxies of
the informationally efficient stock values. The pricing error process is modeled as a mean-
reverting process, which gives us a well-defined notion of over-pricing (positive pricing
error) and under-pricing (negative pricing error) in the market. We show that in this
economy, cap-weighting is a sub-optimal portfolio strategy. This is because, in a cap-
weighting scheme, portfolio weights are driven by market prices; as such, more weights are
allocated to over-valued stocks and less weight to under-valued stocks.

More importantly, we show that the CAPM would be rejected in this one factor economy
with noise. Regressing portfolio returns against market clearing portfolio returns, non-cap-
weighted portfolios exhibit significant alpha on average!

Additionally, a value tilted or size tilted portfolio is predicted to outperform (risk-adjusted).
By construction, value and size are not risk factors in our one factor economy. However,
in the cross-section, large cap stocks and high price-to-book stocks (growth stocks) tend to
underperform. This is because higher capitalization stocks and higher price-to-books stocks
are indeed more likely to be stocks with positive pricing errors.

We note that prices are explicitly inefficient in our economy. However, the inefficiency does
not lead to arbitrage opportunities. We carefully show conditions which prevent arbitrage
in our informationally inefficient economy.

The paper contributes to the anomalies literature by showing that mean-reversion in
stock returns and the Fama–French size and value effects are driven by the same market
defect—pricing noise! This suggests that models, such as disposition effect and information
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herding, which can generate stock price over-reaction and therefore mean-reversion in stock
prices, can also explain the value and size puzzle.

1 Introduction

The size and value effects have spurred spirited
debates since Banz (1981) and Reinganum (1981)
documented that smaller capitalization stocks tend
to outperform (risk-adjusted) and Stattman (1980)
and Roseberg et al. (1985) documented that
high book-to-market stocks also outperform (risk-
adjusted). Similarly, other ratios such as earnings-
to-price, documented by Basu (1980) and dividend
yield, documented by Razeff (1984), Shiller (1984),
Blume (1980) and Keim (1985), also predict future
performance. Fama and French (1992) show that
size and value, along with market beta, capture
well the cross-sectional variation in stock returns
and subsume the explanatory powers of other finan-
cial variables. However, there is little consensus on
whether size and value are proxies for hidden risk
factors or anomalies.1

Fama (1988) argues that market efficiency tests
are always joint tests. Therefore, it is never cer-
tain whether we reject market efficiency or the
assumed pricing model. The rejection of stock
prices as random walks by Poterba and Summers
(1988), Debondt and Thaler (1985, 1987) and Lo
and MacKinlay (1988) can be seen as rejections of
market efficiency or rejections of constant risk pre-
mium assumptions. If equity risk premium was time
varying over the business cycle then financial vari-
ables that are correlated with the macro peaks and
troughs would predict future returns and random
walk assumption would not hold.

There are no easy solutions to this problem. Evi-
dences suggesting inefficiencies in aggregate can

almost always be explained away by carefully con-
structed rational models. However, models based
on irrational investor behaviors have found lim-
ited success in explaining other observed anomalies
other than the ones they were crafted to resolve.
Additionally, there is always concern that the
anomaly would cease to persist once discovered and
therefore be irrelevant to investors interested in a
normative model on investment strategies.

Since it is very difficult to distinguish between
anomalies and hidden risk factor explanations,
model simplicity and the ability to address mul-
tiple empirical curiosities are key in modeling. In
the paper, we construct a one factor economy
and assume a simple stock return process where
market prices are noisy relative to fundamental
prices (pricing inefficiency, and therefore investor
irrationality, is explicitly assumed) and derive a
variety of interesting portfolio results. We show
first that price-weighted portfolios underperform
non-price-weighted portfolio, risk-adjusted. This
explains the puzzle documented by Arnott et al.
(2005), Shimizu and Tamura (2005) and Hsu and
Campollo (2006), which find that cap-weighted
market indexes underperform indexes constructed
from company financials. We also show that the
covariance with the market clearing portfolio does
not explain cross-section return variance in this one
factor economy and that passive portfolios can show
significant alphas in CAPM time series regressions.
This is consistent with the literature on the testing
of CAPM. We also show that individual stocks can
exhibit short-term random walk but longer hori-
zon negative autocorrelation. This is consistent with
the findings of Shiller (1984), Summers (1986),
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Stambough (1986), and Fama and French (1988).
Additionally we show that market cap and ratios like
book-to-market and earnings-to-market can predict
next period returns, which is consistent with the
vast empirical literature on size, value, earnings-to-
price, and dividend yield. Finally, we show that
size and value factors (constructed ala Fama and
French (1992)) can explain the cross-sectional vari-
ance in returns and largely eliminate the time series
regression alpha.

We believe that our model represents a parsimo-
nious explanation for a number of anomalies in the
empirical literature. Certainly, we do not explain
everything, and specifically we remain agnostic on
whether hidden risk factors or other behavioral
drivers also partially contribute to the size and value
related effects. However, we do believe that we
offer a compelling model and contribute to the
understanding of these empirical puzzles.

2 Framework

We model a one factor economy, where the risk
premium for a stock depends singularly on its expo-
sure to one unobserved source of aggregate risk (F ).
Furthermore, we assume that the mark-to-market
prices, Pt (market prices), deviate from the infor-
mationally efficient stock values, Vt .2 Specifically,
Pt = Vt + et —that is, market prices are noisy prox-
ies for the informationally efficient values, which
are assumed unobservable. The idiosyncratic pric-
ing errors (et ) are assumed to mean-revert to zero at
the speed ρ. Consequently, a stock, with a market
price greater than its efficient value, is over-valued
and deliver less than its risk-adjusted fair return and
vice versa as et mean-reverts. However, since et is
mean zero, on the average, this price inefficiency has
no impact on expected stock returns. Additionally,
since et are idiosyncratic, a broad based portfolio
equally weighted would have almost no aggregate
mispricing relative to the efficient valuation.

By assumption, the market is not informationally
efficient, so alpha strategies exist; though there are
no arbitrage opportunities.3 It is therefore, tac-
itly assumed that investors are not aware of the
alpha opportunity (or do not take advantage of
it sufficiently) and thus allow such opportunity
to persist. Both the pricing error process and the
efficient stock value process are given exogenously.
We do not model the preferences and institutional
structures which lead to these exogenous valuation
processes. However, we appeal to the stock return
anomaly studies in empirical asset pricing litera-
ture and behavioral finance literature to support our
assumption that prices are not always fully infor-
mationally efficient. De Bondt and Thaler (1985,
1987) and Shiller (1981), find patterns of investor
overreaction. Poterba and Summers (1986, 1988)
find evidence of stock price mean reversion. Lo and
MacKinlay (1990) and Lakonishok et al. (1994)
find ourperformance for contrarian strategies.

We show, in this economy, that buying and holding
the market clearing portfolio lead to inferior portfo-
lio performance. This is because the market clearing
(market) portfolio is capitalization weighted; as
such, unwarranted additional weights are given to
over-valued stocks and taken from under-valued
stocks, resulting in lower future returns. On the
other hand, a non-cap-weighted portfolio with the
similar factor exposure would earn a comparably
higher return. In general, any price-weighted port-
folio would exhibit positive correlation between
portfolio weights and over-valuation (positive et ),
which leads to underperformance against its fair
return.

Furthermore, we show that portfolio strategies
which condition on size (market cap) and value
(price-to-book or price-to-earnings) offer superior
performances. Specifically, small cap and value
biases in a portfolio improve risk-adjusted return
over time. We show that size and value anoma-
lies are driven by the same phenomenon—pricing
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noise. In the cross-section, higher capitalization
tends to be correlated with over-valuation, which
leads to both large cap and high price-to-book
underperformance.

In this economy, the market portfolio has a nega-
tive alpha when regressed against the macro factor
F due to over-weighting the over-valued and under-
weighting the under-valued. When we regress
individual stocks against the market portfolio in a
CAPM time series regression, we find significant
non-zero intercept for a large fraction of the popu-
lation (well in excess of what could be statistically
reasonable). Consequently, market beta does not
explain stock returns in the cross-section.

Our results suggest that the Fama–French value and
size factors are likely not proxies for hidden risk
factors but are anomalies. Size and value premia are
not risk related but driven entirely by pricing noise
in the equity market, which also drives stock price
mean-reversion and contrarian profits.

The paper contributes to the anomalies literature
in three ways. (1) It suggests that the value and
size factors can arise empirically (even in a one
factor economy) if the market portfolio is a poor
proxy for the one hidden risk factor. (2) It shows
that the value and size puzzle and the stock price
mean-reversion are anomalies driven by the same
market imperfection and can arise quite naturally
when stock prices are noisy. (3) It suggests that
behavioral and rational4,5 models which can gener-
ate stock price overreactions resulting in contrarian
strategy profits, can also explain the value and size
effect.

3 True stock value dynamics for individual
stocks

We assume an economy with one aggregate source
of risk and a finite number of securities. However, it

will become obvious that many of the key results do
not depend on the pricing model nor the one fact
assumption. The true stock value is unobservable.
The dynamics are described by

dVi

Vi
= µidt + βiσF dWF + συidWυi , (1)

where,

(1) µi is the drift term and is the instanta-
neous return for the true value process and is
described by

µi = rf + βiλF , (2)

where rf is the instantaneous risk free rate
and λF is the risk premium for holding one
unit of the factor risk exposure. Note that
the risk premium formula is assumed. If the
true stock price were observable and trad-
able, then (2) arises natural in equilibrium in
the limit following the APT argument. We
do not need this explicit relationship between
factor exposure and expected return to drive
most of our results. However, this relation-
ship between factor loading and return is
intuitively appealing and will be necessary
for analyzing the cross-section return vari-
ance and time series analysis in a CAPM
context.

(2) βi is stock i’s factor loading.
(3) dWF is an increment to a standard Wiener pro-

cess and represents the common factor to all
stocks.

(4) dWυi is an increment to a standard Wiener
process and represent idiosyncratic shocks to
the true stock value. Additionally, we assume
that E [dWυidWυj] = 0 for i �= j and
E [dWυidWF ] = 0.

Note that there is only one risk factor in this econ-
omy and risk premium can only be earned from
holding exposure to this one factor risk.
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4 Mark-to-market return dynamics for
individual stocks

We further assume that the observed market price
is a noisy proxy for the true stock value. The market
price is defined by

Pi = ViUi , (3)

where Ui is defined by

Ui = 1 + Ũ i ,
6 (4)

where Ũ i is a mean-reverting process defined by

d Ũ i = (1 + Ũ i)(−ρi Ũ idt + σŨ idWŨ i), (5)

where 0 ≤ ρi < 1 and dWŨ i is an incre-
ment to a standard Wiener process. Note that
when Ũ i> 0, the market price is over-valued rel-
ative to the fair price. Additionally we assume that
E [dWŨ idWŨ j] = 0 for i �= j, E [dWŨ idWυj] = 0
for all i and j, and E [dWŨ idWF ] = 0.

The market price dynamics can then be written as

dPi = VidUi + UidVi . (6)

Substituting we have

dPi = ViUi( − ρi Ũ idt + σŨ idWŨ i) + UiVi(µidt

+ βiσF dWF + συidWυi). (7)

Rearranging, the mark-to-market return process is
given by

dri = dPi

Pi
= (µi − ρi Ũ i)dt

+ βiσF dWF + σridWri , (8)

where

σridWri = σŨ idWŨ i + συidWυi , (9)

and where
σri =

√
σ2

Ũ i
+ σ2

υi . (10)

Note from Eq. (8), that the mean-reverting pricing
error process does not have an impact on the equity

premium; though the cumulative return does suf-
fer from the increased volatility. From Eq. (8), the
mark-to-market return process is mean-reverting,
suggesting that observed stock returns are negatively
autocorrelated. While empirical evidences support
negative autocorrelation, the literature also con-
cludes that the magnitude may be too small or
the effect too unreliable to be profitably exploited
given the volatility in stock returns. However, we
concede that the mean-reversion in returns can be
an uncomfortable prediction, especially in a par-
tial equilibrium model. We appeal to Summers
(1986) and argue that standard statistical tests can-
not reject the random walk hypothesis even when
the true process is strongly mean-reverting; as such
investors would not take large positions to trade on
any perceived mean-reversion in stock returns.

5 Mark-to-market return dynamics for
portfolios

The return on a portfolio � defined by a vector of
weights {ω1, ω2, . . . , ωN } can be written as

dr� =
N∑

i=1

ωidri = (µ� − ρŨ �)dt + β�σF dF

+ σ�dW�, (11)

where

µ� =
N∑

i=1

ωiµi = rf + β�λ, (12)

ρŨ � =
N∑

i=1

ωiρi Ũ i , (13)

β� =
N∑

i=1

ωiβi , (14)

σ�dW� =
N∑

i=1

ωiσridWri , (15)
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where

σ� =
√√√√ N∑

i=1

ω2
i σ

2
ri , (16)

and where in the limiting case σ�dW� →0 as
N → ∞.

To derive additional portfolio implications we need
to make explicit the portfolio weighting scheme. In
the following two sections, we consider the portfolio
return dynamics for a cap-weighted portfolio and a
non-cap-weighted portfolio.

5.1 Cap-weighted portfolios

For simplicity and without loss of generality, we
assume each company issues only 1 share of stock
(therefore market price and market cap are the
same). The cap-weighted portfolio is defined by the
following vector of weights

CW =
{

P1

P�

,
P2

P�

, · · · ,
PN

P�

}
, (17)

where

P� =
N∑

i=1

Pi , (18)

The return on the cap-weighted portfolio is then

drCW = (µCW − ρŨ CW)dt + βCWσF dF

+ σCWdWCW, (19)

where

µCW =
N∑

i=1

Pi

P�

µi = rf + βCWλ, (20)

ρŨ CW =
N∑

i=1

Pi

P�

ρi Ũ i

=
N∑

i=1

Vi

P�

ρi(1 + Ũ i)Ũ i , (21)

βCW =
N∑

i=1

Pi

P�

βi , (22)

σCWdWCW =
N∑

i=1

Pi

P�

σridWri , (23)

and where σCWdWCW →0 as N → ∞.

Rewriting the drift term for the portfolio dynamics
in (19), we have(

µCW −
N∑

i=1

Vi

P�

ρi Ũ
2
i

)
−

N∑
i=1

Vi

P�

ρi Ũ i , (24)

where −∑N
i=1

1
P�

ρiViŨ
2
i is strictly negative except

when ρi= 0 for all i (when pricing errors are not
mean-reverting but random walks). That is to say
that cap-weighting leads to a drag in portfolio
expected return.

While there are only a finite number of stocks (this
is both realistic and necessary to prevent arbitrage in
our economy), the exposition is more clear when we
examine the limiting case expression. We will appeal
to this format of analysis throughout the paper to
improve intuition, though it is not necessary for the
results.

In the limiting case,
∑N

i=1
Vi
P�

ρi Ũ i → 0 as N →
∞ and

∑N
i=1

Vi
P�

ρi Ũ
2
i → δCW.7 Note δCW is

monotone increasing in the average variance of the
pricing noise in the stock cross-section. Equation
(19) then reduces to

drCW = (µCW − δCW)dt + βCWσF dF . (25)

And the holding period return is

Et [rt ,t+T ] = Et e
∫ t+T

t drCW

= e(rf +βCWλ−δCW−0.5β2
CWσ2

F )T . (26)

Equation (25) suggests that in a well diversified
portfolio constructed from cap-weighting, the port-
folio expected return is the cap-weighted expected
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returns of the constituent stocks less a drag term
δCW. This return drag occurs because portfolio
weights are positively correlated with prices; stocks
that are over-valued would receive added weights
in the portfolio and stocks that are under-valued
would receive less weights. The greater the mispric-
ing in the market, the more severe is this problem
and the larger the resulting drag (δCW) to the
cap-weighted portfolio.

5.2 Market-value-indifferent portfolios

We now consider portfolio weights which do not
depend on market capitalizations (or market prices).
The weights could be as arbitrary as random weights
or as simple as equal weights. We denote the vector
of weights as

NC = {w1, w2, . . . , wN }, (27)

The return on the non-cap-weighted portfolio is
then

drNC = (µNC − ρŨ NC)dt + βNCσF dF

+ σNCdWNC, (28)

where

µNC =
N∑

i=1

wiµi = rf + βNCλ, (29)

ρŨ NC =
N∑

i=1

wiρi Ũ i , (30)

βNC =
N∑

i=1

wiβi , (31)

σNCdWNC =
N∑

i=1

wiσridWri . (32)

Note that the non-cap-weighted portfolio drift
term is

µNC −
N∑

i=1

wiρi Ũ i . (33)

Comparing Eqs. (33) to (24), we find that a non-
cap-weighted portfolio does not suffer a drag in
expected return.

In the limit, σNCdWNC → 0 and ρŨ NC → 0 as
N → ∞.8 Equation (28) then reduces to

drNC = µN dt + βNCσF dF . (34)

And the holding period return is

Et [rt ,t+T ] = Et e
∫ t+T

t drNC

= e(rf +βNCλ−0.5β2
NCσ2

F )T . (35)

Comparing the expected cumulative holding period
return for a cap-weighted portfolio and a non-cap-
weighted portfolio of the same factor exposure or
same β (the limiting case shown in (26) and (35)),
we find that the non-cap-weighted portfolio has a
higher return. In fact, in the limit, there is arbi-
trage as indicated by (34) and (25). Therefore, it
is important that in our economy, N is sufficiently
different from infinity and/or that the factor loading
β cannot be measured with perfect precision.

6 Using the cap-weighted “market” portfolio
as a factor

In this section we express return dynamics for stocks
and portfolios relative to the observed cap-weighted
“market” portfolio instead of the unobserved fac-
tor F . This shift in measure leads naturally to the
CAPM regression formula and predicts that in the
stock cross-section, the average stock will show a
CAPM alpha.

Rewriting Eq. (19), we have

σF dF = 1

βCW
drCW − (µCW − ρŨ CW)

βCW
dt

− σCW

βCW
dWCW. (36)
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For individual stocks, substituting into (8), we have

dri =
(

µi − ρi Ũ i − βi

βCW
(µCW − ρŨ CW)

)
dt

+ βi

βCW
drCW − βi

βCW
σCWdWCW

+ σridWri . (37)

Additionally, we define a new process, the excess
market return process

dRM = drCW − rf dt , (38)

and a new variable γi = βi
βCW

.

Substituting into (37), we have

dri = (µi − ρi Ũ i − γi(µCW − rf − ρŨ CW))dt

+ γidRM − γiσCWdWCW + σridWri .

(39)

Recall Eq. (2), where µi = rf + βiλF , we can
rewrite (39) as

dri = (rf − ρi Ũ i + γiρŨ CW)dt + γidRM

− γiσCWdWCW + σridWri . (40)

In the limiting case as N → ∞, we have

dri = (rf − ρi Ũ i + γiδCW)dt +γidRM +σridWri .
(41)

Note that the average stock is expected to show an
“alpha” equal to γiδCW when its excess stock return
is regressed against the excess market return.

For a non-cap-weighted portfolio, Eq. (28) can be
expressed as

drNC = (rf − ρŨ NC + γNCρŨ CW)dt

+ γNCdRM − γNCσCWdWCW

+ σNCdWNC. (42)

In the limiting case as N → ∞, we have

drNC = (
rf + γNCδCW

)
dt + γNCdRM . (43)

A non-cap-weighted portfolio is expected to show
an “alpha” in a CAPM regression.

7 Value and size predict returns but are
not risk factors

In this section we show that, in this economy, size
and value exposure in a stock or portfolio can be
used to predict future returns. Specifically, small size
exposure and value exposure lead to superior stock
or portfolio returns, adjusting for “market” beta. By
assumption, we are in a one risk factor economy;
size and value are not risk factors. The observed
alpha in a CAPM regression is driven purely by the
return drag in the cap-weighted market portfolio.

Recall from (40) that the individual stock return
dynamics can be written as

dri = (rf − ρi Ũ i + γiρŨ CW)dt + γidRM

− γiσCWdWCW + σridWri . (44)

Examining Eq. (44), we know that a larger stock
would on average have a negative drift term in excess
of the risk free rf . It is straightforward to show that
a larger stock, denoted by pi > p̄, where p̄ denote
the capitalization of the average company, will have
a greater chance of receiving a positive pricing error
Ũ in the last period and therefore be more likely to
underperform going forward as the positive pricing
error reverts to zero.

More formally, since Ũ i is a mean zero random
variable, E [Ũ i |Pi > P̄] > 0 if the conditional
probability Pr{Ũ i > 0|Pi > P̄} > Pr{Ũ i > 0}.

Using Bayes rule of conditional probability, we
have:

Pr{Ũ i > 0|Pi > P̄}
= Pr{Pi > P̄ |Ũ i > 0} · Pr{Ũ i > 0}

Pr{Pi > P̄} . (45)

It is clear that:

Pr{Pi > P̄ |Ũ i > 0} > Pr{Pi > P̄}. (46)
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Substituting (46) into (45), we have

Pr{Ũ i > 0|Pi > P̄}
= Pr{Pi > P̄ |Ũ i > 0} · Pr{Ũ i > 0}

Pr{Pi > P̄}
> Pr{Ũ i > 0}, (47)

which completes the proof that E [Ũ i |Pi > P̄] > 0.
This in turn proves that size predicts next period
return, E [∫ t+�

t dri |Pi,t > P̄t ] < E [∫ t+�

t dri].

Similarly, we show that, under some fairly general
and reasonable assumptions on the book value pro-
cess, a growth stock (as defined by above average
price-to-book ratio or Pi

Bi
> P̄

B ) would be more likely
to have received a positive pricing error and there-
fore have a negative drift term in excess of the risk
free rf . We now show that

E
[
Ũ i

∣∣∣Pi

Bi
<

P̄
B

]
< 0 and E

[
Ũ i

∣∣∣Pi

Bi
>

P̄
B

]
> 0.

Again, we must show that Pr
{

Ũ i > 0
∣∣∣Pi

Bi
> P̄

B

}
>

Pr{Ũ i > 0} to prove that E
[
Ũ i

∣∣∣Pi
Bi

> P̄
B

]
> 0.

First, Bayes rule gives:

Pr{Ũ i > 0|Pi > P̄}

=
Pr
{

Pi
Bi

> P̄
B

∣∣∣Ũ i > 0
}

· Pr{Ũ i > 0}
Pr
{

Pi
Bi

> P̄
B

} . (48)

Now we need to show that

Pr

{
Pi

Bi
>

P̄
B

∣∣∣Ũ i > 0

}
> Pr

{
Pi

Bi
>

P̄
B

}
. (49)

A sufficient condition for this inequality to hold
is that the book value process B is not influenced
by market mispricing Ũ i as strongly as the price
process Pi .9 More specifically, as long as the process
for Pi

Bi
has a drift term that is negative in Ũ i , the

inequality bears true.

Hence, if the book values of companies are not
(as) subjected to the effects of mispricings in stock

prices, then E
[
Ũ i

∣∣∣Pi
Bi

> P̄
B

]
> 0, which indicates

that price-to-book ratio can predict next period

return, E
[∫ t+�

t dri

∣∣∣Pi,t
Bi,t

> P̄t
Bt

]
< E [∫ t+�

t dri].

The inequality in Eq. (49) can be extended to
include more than just price-to-book ratio but also
price-to-dividend and price-to-earnings ratios. This
further explains the empirical observations that
low yielding stocks and high P/E stocks tend to
underperform.

Since conditional expectation is linearly additive, it
is again straight forward to show that any portfo-
lio which has smaller weighted average cap than the
“market” portfolio, would have a positive excess drift
and would show a positive CAPM alpha in a time
series regression. Similarly, any portfolio which has a
lower price-to-book ratio (lower P/E or higher yield)
than the “market” portfolio, would have a positive
excess drift and show a positive CAPM alpha.

8 Conclusion

In this paper, we show that the Fama–French value
and size factors can be explained quite simply if we
are willing to entertain informational inefficiency
in stock prices. A simple one factor economy with
price noise, where pricing errors are mean-reverting,
can generate the Fama–French return anomalies
as well as mean-reversion in stock returns. Given
the strong support in the empirical and the behav-
ioral literature that point to excess price volatility
(price overshooting) and contrarian profits, we find
our explanation of the Fama–French size and value
anomalies more attractive than explanations based
on rational models with hidden risk factors.

The model is very parsimonious and is able to simul-
taneously explain stock price mean-reversion and
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the size and value effects and is able to offer rea-
sonable explanation for the empirical findings from
the CAPM literature. We believe that the paper con-
tributes significantly to the anomalies literature in
three ways. (1) It suggests that the value and size
factors can arise empirically (even in a one factor
economy) if the market portfolio is a poor proxy
for the one hidden risk factor. (2) It shows that
the value and size puzzle and the stock price mean-
reversion are anomalies driven by the same market
imperfection and can arise quite naturally when
stock prices are noisy. (3) It suggests that behav-
ioral and rational models which can generate stock
price overreactions resulting in contrarian strategy
profits, can also explain the value and size effect.

Notes
1 See Fama (1991) for a comprehensive review on anoma-

lies and market efficiency.
2 For our purpose, it is not necessary to define how the

market arrives at the informationally efficient value Vt .
However, it may still be convenient to think of the classic

valuation equation where Vt = Et

[∑∞
s=t e−rsDivs

]
.

3 In classic efficient markets, the future prospects of an
investment tacitly rise and fall with share price, so that the
IRR of an investment will not be advantaged by a drop
in price or disadvantaged by an increase. Our assump-
tions stand in stark contrast—when price rises there is an
appreciable probability that the increase is driven partly
by overreaction to positive news, therefore, the subse-
quent IRR can be expected to fall. Empirically, this results
in stock price mean-reversion, which is a violation of the
weak-form market efficiency condition.

4 See papers on disposition effect by Sherfin and Statman
(1985), Grinblatt and Han (2002) and Goetzmann and
Massa (2005) and on mental accounting bias by Kah-
neman and Tversky (1979) and Barberis and Huang
(2001).

5 See papers on rational and irrational information herding
by Khanna and Sonti (2000), Hautière (2002), Chan
et al. (2005), Lakonishok (2002), and Maug and Naik
(1996).

6 This substitution is for notational ease and simplicity
of exposition, but does not otherwise further any useful
intuition.

7 The limit converges to zero if VN
P�

does not fall faster than
1/N as N goes to ∞.

8 Again, for the limit to converge to zero, we require wi to
fall slower than 1/N as N goes to ∞.

9 A reasonable process for book value might be one which
depends on the unobserved efficient value V as well other
variables that do not depend on the pricing error Ũ i :
dBi
Bi

= κi
dPi
Pi

+ ηidt + σBidWBi , where κi < 1.
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