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Abstract

Can Noise Create the Size and Value Effects?

The price of a stock may differ from its fundamental value by a random noise.
In this case, small-capitalization and value stocks are more likely to have negative
noise, while large-capitalization and growth stocks are likely to have positive noise.
Negative price noise implies that small-capitalization and value stocks are more likely
undervalued and thus have higher expected return than justified by risk, while the
large-capitalization and growth stocks are more likely overvalued. We formally verify
and explore this intuition by using a standard noise-in-price model.

We compute in closed form time-series size/value premium. We then compute the
cross-sectional variations of the expected stock return. Our model is parsimonious
with essentially only one adjustable parameter–the volatility of the price noise. With
a moderate volatility of price noise, the cross-section of the expected stock return
matches quantitatively the empirical counterpart in Fama and French (1992). Our
study suggests that a modest amount of noise in prices can create size and value
effects.
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1 Introduction

In this paper, we show that noise in price can create a rich pattern in the cross-section

of expected stock returns. In particular, we show that noise in prices can explain the size

and value effects in the sense that small-cap stocks and value stocks (stocks with low price-

dividend ratios or price-book ratios or price-earning ratios) have higher returns than justified

by risk.

As is standard in price noise literature, we assume the price of a stock equals to its

intrinsic value with a random noise. The intrinsic value can be computed from economics

models. For a given stock, we show the noise-in-price model predicts that there is a size and

value effect in time series; in other words, the conditional expected return decreases with the

market cap and price-to-dividend ratio1 . This result is quite intuitive. For example, the low

price of a small-cap stock may be the result of either a low intrinsic value or a negative price

noise or a combination of the two. A low intrinsic value yields a fair return, but a negative

noise in price implies that stock is undervalued, which leads to a superior return that is not

related to risk. The same logic applies to value stocks, while the reciprocal logic applies to

large-capitalization and growth stocks. Lewellen (1999) documents the value effect in time

series by showing that book-to-market ratios predict stock returns.

To develop a cross-section model of expected stock returns, we make an unrealistic as-

sumption that all stocks have the same ex-ante return distribution. This assumption is made

in other theoretical studies on size and value effects and implies that time-series draws of

any given stock are the same as cross-sectional draws of different stocks. This property links

time-series size and value effects to a cross-sectional size and value effects. Furthermore, in

our model, because there is no cross-sectional variation in parameters, the cross-sectional

variation in expected stock returns is solely caused by variations in the realization of noise.

1We used price-dividend ratio instead of book-to-market ratio to reduce the number of parameters. To
computer returns, we have to specify dividend process already. If we use book-to-market ratio, we have to
specify the book process in addition, which necessarily introduces more parameters into the model.
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We use a stylized and parsimonious noise-in-price model. We compute2 the table of 10×10

cross-sectional expected returns that matches quantitatively to its empirical counterpart,

Table V of Fama-French (1992), with only one parameter that is not directly measured from

the data, namely the noise volatility of returns. The other four parameters are average

return, total volatility, average dividend growth rate and dividend growth volatility; none of

which has any bearing on the size or value effects and each of which can be readily estimated.

We should note that only a moderate amount of noise is needed to generate realistic size

and value effects. The ratio of the variance of noise to that of total stock return is only

10%. This ratio is consistent with ones in empirical studies on market efficiency (Poterba

and Summers (1986, 1989) and Fama and French (1988)). Furthermore, the pattern of table

V of Fama and French (1988) is produced essentially with only one adjustable parameters,

which is the noise variance.

In noise-in-price models, the price does not from market clearing, instead they are ex-

ogenously specified. These models are tractable reduced-form models to capture deviations

from standard asset pricing model predictions. Thus, they should be viewed as econometric

models. Noise-in-price models have been applied widely in finance and have produced im-

portant insights. For example, they have been applied to study inefficient markets (Black

(1986), Summers (1986), Poterba and Summers (1986)), market microstructure (Blume and

Stambaugh (1983)), liquidity (Bao, Pan, and Wang (2008)), and asset pricing model errors

(Brennan and Wang (2010)).

Our noise-in-price model is similar to that of Blume and Stambaugh (1983). However,

the mechanism that generates the size effect in their paper is completely different from ours.

Blume and Stambuagh rely on a key extra assumption, that small-cap stocks have higher

noise volatilities and thus have higher expected returns because of the Jensen effect. The

variation in expected stock returns in Blume and Stambaugh is driven by the variation in

ex ante distribution, that is, parameter variation. Furthermore, the premium from Blume

and Stambaugh’s mechanism is too small to explain size and value effects in lower frequency

2We should remark that in other theoretical studies the similar table is generated by simulation.
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data, such as quarterly or longer.

In our model, by assuming that all stocks have the same ex ante distributions, the

Blume and Stambaugh mechanism and intuition for generating the size premium is shut

off completely. Instead, small-cap stocks in our paper are defined to be ones with low

market caps and, as a consequence of experiencing predominantly negative price noise, have

higher expected returns. In other words, the variation in cross-sectional expected returns

is completely driven by the variation in the realization of the random price noise. This

mechanism is different from that in Blume and Stambaugh.

Parameter variations should lead to additional cross-sectional variations in expected re-

turns as shown by Blume and Stambaugh (1983). Certainly, we believe that both parameter

variation and random noise realization contribute to the cross-sectional size and value ef-

fects. However, we choose to shut off the parameter variation channel, to highlight that

noise alone can generate the size and value premiums documented in the literature, with a

plausible noise parameter.

In equilibrium models, the price always equals to the intrinsic value, thus the noise in

price is always zero, this is true even in noisy rational expectation equilibrium models where

the noise is in random supply only not in price. In equilibrium models of size and/or value

effect3, the expected return in excess of risk free return is the compensation for risk. In

noise-in-price models, the prices are exogenously specified; they are not derived from market

clearing conditions or any other conditions; the expected return in excess of the riskfree

return has a component that is not accounted for by risk.

Contrary to what one might expect, existing models of under-reaction and over-reaction

by economic agents, such as Barberis, Shleifer, and Vishny (1998) and Daniel, Hirshleifer,

and Subrahmanyam (1998), actually do not have noise in price, at least not in the form of

this paper. These models offer economic explanation to size or value effects.

Berk (1995, 1997) points out that in any model in which the cross-sectional covariance

3See for example, Barberis and Huang (2001), Daniel, Hirshleifer, and Subrahmanyam (2001), Gomezs
Kogan, and Zhang (2003), Zhang (2005) and Yogo (2006).
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between expected payoff and expected return is zero, the cross-sectional correlation between

price and expected return has to be negative. Applicability of Berk’s critique is wide, but

it explains neither the source nor the magnitude of the size and value effects, which have

been the focus of many asset-pricing studies.4 It is important to know whether the superior

return of small and value stock is a result of risk or not. Berk’s critique is silent on all these

issues.

Our paper proposes noise as a contributing, perhaps dominant, source of the size and

value effects. We illustrate that this view is plausible by computing size and value premiums

that match the empirical data. The premiums associated with small-cap and value stocks in

our model are driven solely by a reasonable noise parameter and are not attributed to risk.

Finally, on a technical note, contrary to Berk’s assumption, the cross-sectional covariance

between the expected payoff and the expected return in our paper is nonzero and plays a

crucial role in explaining the size and value effects.

Brennan and Wang (2010) have a similar noise-in-price model and study the effect of

noise in price on unconditional expected of return due to Jensen’s inequality. Thus, they

explore the channel of Blume and Stambaugh (1983). The effect of this channel is completely

switched off in in our paper, as we mentioned earlier.

Our paper is organized as follows. In Section 2, we formally introduce our model of noise.

In Section 3, we solve in closed form the expected returns conditional on price and the price-

to-dividend ratio. We then compute the table of expected returns sorted into 10× 10 price

and the price-to-dividend ratio deciles, which is the theoretical counterpart to Table V in

Fama and French (1992). In Section 4, we discuss related literature. We make concluding

remarks in Section 5.

4To name only a few, Fama and French (1992), Lakonishok, Shleifer, and Vishny (1994), Barberis and
Huang (2001), Daniel, Hirshleifer, and Subrahmanyam (2001), Gomez, Kogan, and Zhang (2003), Bansal
and Yaron (2004), Zhang (2005), and Yogo (2006).
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2 Noise-in-Price Model

We present here our adaptation of the classic noise-in-price model and discuss the key eco-

nomic assumptions and technical assumptions underlying the model. We note that similar

specifications of the noise-in-price model are found in Blume and Stambaugh (1983), Sum-

mers (1986), Fama and French (1988), Aboody, Hughes, and Liu (2002), Arnott (2005a, b),

Hsu (2006), Arnott and Hsu (2008), and Brennan and Wang (2006).

Assumption 1 There are N stocks. At time t, stock k has an intrinsic value Vkt, with
k = 1, ..., N . The intrinsic value return is a constant and is the same for all stocks.

The observed market price, Pkt, of a stock deviates from its intrinsic value, Vkt, by noise
e∆kt. Specifically,

Pkt = Vkte
∆kt , (1)

where noise ∆kt is cross-sectionally and intertemporally independent of intrinsic value Vls,
for stock l at time s, for all k, l, t, and s and the unconditional expectation E[e∆kt ] of e∆kt

satisfies

E[e∆kt ] = 1, k = 1, 2, ..., N. (2)

The dividend, Dkt, of the stock is also independent of noise ∆ls for stock l at time s for all
k, l, t, and s.

Let vkt = lnVkt, pkt = lnPkt, and dkt = lnDkt. We also assume5

vkt+1 = µv + vkt + βft+1 + σεvkt+1, (3)

∆kt+1 = −1

2
σ2
ε∆

+ σε∆ε
∆
kt+1, (4)

vkt+1 − dkt+1 = x̄v + σεxε
v
xt+1, (5)

where ft is mean-zero normal for all t that is independent of all other random variables and
ft and fs are independent for all t and s, σε∆, µv, β, σ, x̄v, and σεx are all constants. All
shocks are independent across stocks and time.

Note that we have made our assumptions as simple as possible to illustrate that noise real-

ization alone is sufficient to match the desired empirical moments. Extending the model to

incorporate other realistic features is often straightforward and is discussed later.

5We can easily make both the noise process ∆kt+1 and the dividend-price ratio vkt+1 − dkt+1 AR(1)
processes without losing tractability.
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The intrinsic value return is assumed to have a constant mean that is the same for all

stocks, so we are assuming no size and value effects in the absence of noise. Equation (1)

states that for each stock k, the market price Pkt of the stock deviates from its intrinsic value

Vkt by a random noise e∆kt . Equation (2) states that the deviation, on average, is zero.

The assumptions in Equations (3-5) are mostly technical in nature and are made for

tractability. Equation (3) says that the log intrinsic value is a Gaussian random walk.

Equation (4) says that the log noise is normal and identically and independently distributed

(i.i.d.) over time. Although this assumption implies that the pricing error will disappear

after one period, the assumption can be relaxed without losing tractability. Equation (5)

says that the price-to-dividend ratio is mean reverting over time.6

We assume lognormality in our random variables to gives us tractability to compute

conditional expected returns. With non-gaussian specifications, it is not easy to compute

in closed form the inference about the noise, but all the insights and intuitions remain. We

note also that the price noise is specified in multiplicative form instead of additive form,

again for tractability.7

In the above assumption, ft represents the systematic risk factor, and the beta coefficient

is the same for all stocks. All stocks have the same expected return and idiosyncratic

volatility. The idiosyncratic shocks are independent. Stocks have identical distributions but

are not independent because of the presence of systematic risk factor ft. We deliberately

restrict our model so that parameter variations are not needed to drive our results, thus

the channel explored in Blume and Stambaugh (1983) and Brennan and Wang (2010) are

completely switched off.

6The assumption on dividend Dkt is necessary for computing returns since dividend Dkt+1 is part of
the cashflow for t + 1, in addition to the price Pkt+1. Equation (5) is used in the literature on predictive
regressions, see for example, Stambaugh (1999) and Torous and Valkanov (2005). There is no price noise in
these studies; the value-dividend ratio is the price-dividend ratio.

7The multiplicative form of the noise specified in Assumption 1 is used in Blume and Stambaugh (1983),
Fama and French (1988), and Hsu (2006). The additive form of Summers (1986) and Aboody, Hughes, and
Liu (2002) is more problematic because the price noise becomes negligible over time as Vt grows. Campbell
and Kyle (1993) overcome this problem by using an additive form with detrended dividends. The problem
does not arise with the multiplicative form.
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In the preceeding return dynamics, the theory that determines intrinsic value Vkt is

unspecified; it can be the consumption-based asset-pricing models, the CAPM, the APT, or

any other model. The exact choice will not affect the results of this paper. For convenience,

we can think of Vkt as the discounted present value of expected future cash flows, where the

discount rates are determined by the return covariance with systematic risks.

3 Cross-Section of Expected Returns

We first compute the unconditional expected stock return. Then, we derive the closed-form

solution for the expected return of a stock conditional on it market price and price-to-

dividend ratio. Using parameters calibrated from U.S. stock market data, we then compute

the table of cross-sectional average return, matched to Table V in Fama and French (1992).

3.1 Cross-Section of Unconditional Expected Returns

We first present the unconditional expected return for stocks in our noise-in-price model.

Proposition 1 (Unconditional Expected Return) If Assumption 1 holds, then

E

[
Pkt+1 +Dkt+1

Pkt

]
= eµ+ 1

2
σ2
r

(
1 + e−x̄v+

σ2
εx
2

)
eσ

2
ε∆ . (6)

Note that the unconditional expected intrinsic value return, which is the unconditional ex-

pected return in the absence of noise, is

eµ+ 1
2
σ2
r

(
1 + e−x̄v+

σ2
εx
2

)
.

Note that the unconditional expected return is independent of k; therefore, it is the same

for all stocks. The cross-section of unconditional expected return in our model is trivial.

The difference between the expected return and the expected intrinsic value return increases

with σ2
ε∆

and is a result of Jensen’s inequality, which is driven by the variance of the random

noise.

Proposition 1 is an analytic closed-form counterpart to Blume and Stambaugh’s (1983)

Equation (6). Blume and Stambaugh compute unconditional expected return for stocks and

7



show that price noise resulted from bid-ask bounce increases the unconditional expected

return. Additionally, the increase in expected return increases with the noise variance. They

find that the higher bid-ask spread for smaller stocks explains 50 percent of the size effect

documented in daily data. The premium from Blume and Stambaugh mechanism is too

small in magnitude.

Following the same intuition from Blume and Stambaugh (1983), we could easily generate

the cross-sectional variations in expected returns documented in Fama and French (1992) if

we assume variations in the exogenously specified noise volatility for stocks. Although we

believe that a portion of the observed variations must be driven by variations in parameters,

from a modeling perspective, it is not very satisfying that the cross-sectional variation is

essentially exogenously assumed. We demonstrate that the size and value effects do not

require such cross-sectional variation in parameters.

In our model, we wish to examine a different aspect of the noise-in-price model. We

focus purely on the effect of the random noise realization on the cross-section of stock re-

turns. We deliberately make the extreme assumption that all stocks are ex ante identical in

return distribution (but correlated), so the mechanism of Blume and Stambaugh (1983) is

completely shut off in our model. With our model, no pattern in cross-sectional expected

return variations is driven by model parameter variations.

Finally, the noise volatility in Blume and Stambaugh (1983) that is required to match

the observed size premium is large. Even at a 10 percent noise volatility for small-cap stocks

and 0 percent for large-cap stocks, the predicted difference in expected return would only be

1 percent, which is very small relative to the documented size premium.

Brennan and Wang (2010) also study the effect of noise in price on unconditional expected

stock returns. They show that the mispricing induced unconditional return premium, either

estimated using a Kalman filter or proxied by the volatility and variance ratio of residual

returns, is significantly associated with realized risk-adjusted returns.
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3.2 Expected Stock Return Conditional on Size and Value

Before we delve into the cross-sectional results, we first compute the expected stock return

conditioned on price (size) and price-to-dividend ratio (value) of a given stock. In our model,

a stock with low price and low price-to-dividend ratio have higher expected return because

such a stock is more likely than other stocks to be undervalued. Accordingly, this mechanism

is different from that of Blume and Stambaugh (1983).

The intuition of the mechanism in our model is straightforward. If ∆kt is negative, the

market price of stock k is lower than its intrinsic value and the expected return with a

negative ∆kt is high. In reality, we do not observed the noise ∆kt. However, the price Pkt

or a price ratio provides information about ∆kt. The lower the price or the price ratio, the

more likely ∆kt is to be negative and the stock to be undervalued.

In the Gaussian setting specified in Assumptions 1, the inference from noise conditioned

on price and the price ratio can be computed in closed form.8

Proposition 2 (Conditional Expected Return) Suppose Assumption 1 holds. Further-
more, assume that the prior distributions of noise ∆kt and log price-to-dividend ratio xkt
are their unconditional distribution, that the prior distribution of log intrinsic value vkt is
normal with mean v̄t and variance σ2

vt, and that (∆kt, xkt, vkt) are uncorrelated. Then, the
expected return conditional on pkt and xkt is

E

[
Pkt+1 +Dkt+1

Pkt
|xkt, pkt

]
= µ

P−γ3

kt X−γ4

kt

PX t,−γ3,−γ4

, (7)

where γ3 =
1

σ2
vt

1

σ2
vt

+ 1

σ2
εx

+ 1

σ2
ε∆

and γ4 =
1

σ2
εx

1

σ2
vt

+ 1

σ2
εx

+ 1

σ2
ε∆

. PX t,γ1,γ2 is the expected value of P γ1

kt X
γ2

kt

given that vkt is a normal with mean v̄t and variance σ2
vt.

We assume that the correlation between log intrinsic value vkt and log intrinsic value-to-

dividend ratio vkt−dkt is zero for notational simplicity. Incorporation of a nonzero correlation

8To draw inference from noise ∆kt from price pkt, we need to know the prior joint distribution of vkt and
∆kt. It is natural to assume that the distribution of ∆kt is its stationary distribution, which has a variance
of σ2

ε∆ . Because vkt is not stationary, there is no natural choice of distribution for vkt. We assume that
vkt is normal with mean v̄t and variance σ2

vt, which can be obtained by a discounted dividend model and
sensitivity analysis of it. From Assumption 1, vkt and ∆kt are independent.
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is straightforward.9

Note that the cross-sectional dependence of the conditional expectation is only through

Pkt and Xkt. Thus, two stocks with the same price Pkt and price-dividend ratio Xkt have

the same expected return. Naturally, if there is no noise (σε∆ = 0), the expected return is

independent of the state variables Pkt and Xkt. In this case, the stock is fairly priced for

all levels of Pkt and Xkt; thus, conditioning on them would produce no effects in expected

returns.

In our model, the size and value effects are both driven by the same source: the price

noise. Conversely, both price pkt and price-to-dividend ratio pkt − dkt are noisy signals of

∆kt. We assume that the correlation between vkt and vkt − dkt is zero; however, there is an

imperfect correlation between pkt and pkt − dkt induced by noise ∆kt. When pkt is low, ∆kt

is likely to be negative, but we cannot be sure because intrinsic value vkt is not observed.

When both pkt and pkt−dkt are low, ∆kt is more likely to be negative. Thus, pkt and pkt−dkt
are correlated but are not substitutes for each other. Using both simultaneously provides

more precise information about ∆kt. In the next section, we use these time series size and

value results to develop a model of cross-sectional expected returns.

Proposition 2 implies that the size and the price-dividend ratio predict stock return;

Lewellen (1999) found that book-to-market predict stock returns. The proposition implies

that the price-dividend ratio predicts returns. Proposition 2 also suggests a panel regression

formula of returns on reversal and price-dividend ratio.

3.3 Cross-Section of Expected Stock Returns

As we pointed out earlier, the cross-section of expected intrinsic value return is trivial,

in the sense that all stocks have the same expected intrinsic value return. In our model,

without noise, the sorted 10 × 10 Fama-French decile portfolios have identical expected

9Many empirical studies analyze expected returns conditional on other price ratios, such as price-to-book
ratio or price-to-earning ratio. We compute the expected returns conditional on the price-to-dividend ratio.
Conceptually, the analysis applies in the same way to any price ratio dependence. We choose price-to-
dividend ratio instead of other ratios to avoid additional parameters.
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returns, as price (size) and price-to-dividend ratio (value) are not related to the return

distribution for stocks. With noise, the stocks sorted into various size and value deciles have

different expected returns because price and price-to-dividend ratio provide information on

the unobserved price noise. Sorting on price and price-to-dividend ratio is, in part, sorting

on realized price noise. It is this aspect of sorting on noise, rather than the sorting on firm

characteristics, that creates the variation of expected returns.

We next show that random noise realization alone can produce significant cross-sectional

variations in expected returns with reasonable parameters. Fama and French (1992) demon-

strate the size and value effects by empirically calculating a table of average returns for

stocks sorted into size and value deciles. Our closed-form solution allows us to calibrate our

model to data and compute the Fama-French Table. To the best of our knowledge, there

are no other theoretical computations that match quantitatively to the levels and patterns

of return variation documented in the table.

Because all stocks have the same distribution in our model, the cross-sectional draw of

different stocks is the same as different draws from the distribution of a single stock. Thus

the cross-sectional average can be computed by using Proposition 2. Note that the time-

series size and value effects become the cross-sectional size and value effect. The times-series

size and value effects are driven by random noise shocks of a single stock over time. The

cross-sectional size and value effects are driven by random random shocks of different stocks

at time t.

Similar to Fama and French (1992), we first partition the (pt, xt) space into cells of 10×10

size, pt, and value, xt, deciles. Note that we have dropped the subscript k because we are

now focusing on the distribution of a single stock. Note that pt and xt are joint normal

with variances
√
σ2
vt + σ2

e and
√
σ2
x + σ2

e and correlation ρ =
σ2
ε∆

σpt
√
σ2
εx

+σ2
ε∆

. We first use pti to

divide the pt space into 10 deciles. For ith size decile, we further divide the xt space into 10

deciles, using xi,j =
√
σ2
x + σ2

eδi,j + x̄, where δi,j can be solved numerically. Let E
[
f(z)|zz

]
denote the expectation of f(z) for z between z and z for a standard normal random variable

z.
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Proposition 3 (Cross Section of Expected Return ) Suppose that Assumption 1 holds.
Furthermore, the number of stock tends to infinity. Then, the expected return conditional on
the (i, j) decile of (pt, xt) space is given by

µ
E
[

(N (pi+1 − ρz)−N (pi − ρz))|xi,j+1

xi,j

]
0.01

,

where pti ≡ δi +
(
γ3σpt + ργ4

√
σ2
εx + σ2

ε∆

)
; xi,j ≡ δi,j +

(
γ4

√
σ2
εx + σ2

ε∆
+ ργ3σpt

)
, with i =

1, ..., 9; z is a standard normal random variable and the expectation is taken with respect to
z. N(·) is the standard normal cumulative probability distribution function.

We use the first and second moments of the U.S. equity market data to calibrate the above

specification. The parameters are summarized in Table 1. The parameter µ affects only the

overall magnitude of the expected return; this parameter has no impact on the results of

our study. We take µ to be 3 percent, which, together with Jensen’s effect, produces a

U.S. market average return of about 8 percent. Because the mean and volatility of the

price-to-dividend ratio are small, the volatility of the stock return is largely caused by price

fluctuations. Note that from Assumption 1,

pt+1 − pt = vt+1 − vt + et+1 − et = µ+ ∆t + σrεrt+1 + σε∆ε∆t+1;

thus, the variance of the return is the sum of variance σ2
r of the value return vt+1 − vt and

conditional variance σ2
ε∆

of noise ∆t+1. We take σr = 30% and σε∆ = σr/3 ≈ 10%. The

ratio σr/σε∆ = 3 gives a ratio between variance of the noise and total variance of the stock

return of 11%. French and Roll (1986) suggest that “between 4% and 12% of the daily

return variances is caused by noise.” Fama and French (1988) estimate that the predictable

variation in stock returns, because of mean reversion, is about 35 percent of the long horizon

variances, and they suggest, similar to Summers (1986), that mean reversion may be a result

of market inefficiency. In his calibration exercises, Summers uses a value for return variance

σ2
r which is of the same order of magnitude as noise variance σ2

ε∆
.

The calibration of parameters for the intrinsic value-to-dividend ratio process is as follows.

Assuming a mean dividend ratio to be about 3 percent, we take x̄v = ln(1/0.03) = 3.5. We

set σεx = 10%. The tables of expected returns are not sensitive to this parameter.10

10In Stambaugh (1999) and Torous and Valkanov (2000), the price-to-dividend ratio process for the market

12



Table 1: Summary of Parameters

µ 3% expected stock return (before Jensen’s effect)
σr 30% volatility of intrinsic value return
σε∆ 10% volatility of noise
x̄v 3.5 mean log price-dividend ratio
σεx 10% log-price-dividend ratio volatility

Table 2: Expected Annual Returns Conditional on Size and Value Deciles

Dividend-to-Price Ratio
All 1 2 3 4 5 6 7 8 9 10

All 11.46 5.54 7.87 9.10 10.09 10.97 11.84 12.74 13.76 15.06 17.62
Small-ME 13.78 7.90 10.22 11.44 12.42 13.30 14.16 15.05 16.06 17.35 19.89

ME-2 12.83 7.03 9.32 10.52 11.49 12.36 13.21 14.09 15.08 16.35 18.86
ME-3 12.34 6.57 8.85 10.05 11.01 11.87 12.72 13.60 14.59 15.85 18.34
ME-4 11.96 6.21 8.48 9.67 10.63 11.49 12.33 13.21 14.20 15.46 17.94
ME-5 11.62 5.88 8.14 9.34 10.29 11.15 11.99 12.86 13.85 15.10 17.57
ME-6 11.29 5.57 7.82 9.01 9.96 10.82 11.66 12.53 13.51 14.76 17.23
ME-7 10.95 5.25 7.49 8.68 9.63 10.48 11.32 12.18 13.16 14.41 16.87
ME-8 10.57 4.89 7.13 8.31 9.25 10.10 10.94 11.80 12.78 14.02 16.47
ME-9 10.09 4.43 6.66 7.84 8.78 9.63 10.46 11.32 12.29 13.53 15.97

Large-ME 9.18 3.53 5.76 6.93 7.87 8.72 9.54 10.40 11.37 12.60 15.04

This table presents annual expected returns, in percentage, conditional on price (ME) and dividend-to-price
ratio deciles.

We present the expected returns conditional jointly on size and value in Table 2, which

is computed from Proposition 3 with the parameters given in Table 1. The intuition for the

table is simple. The expected stock return computed for each 10 × 10 cell is the expected

return conditional on belonging to a price and price-to-dividend ratio joint decile. Belong-

ing to a low price and low price-to-dividend ratio decile is a signal for being more likely

undervalued than overvalued.

As we pointed out earlier, we choose the price-to-dividend ratio mainly to avoid extra

follows an AR(1) process. In our specification, the AR(1) coefficient is set to zero for simplicity. This
parameter can be introduced in the model without losing tractability, but our empirical tables are not
sensitive to this parameter.
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parameters. We would expect little or no difference if the price-to-book or price-to-earnings

ratios were used instead. The expected returns in Table 2 are similar to those of Table V of

Fama and French (1992), when annualized. Note that our expected returns are monotonic

as a function of deciles while the monotonicity is only approximately in Table V of Fama and

French; this discrepancy can easily be driven by measurement errors in the sample averages.

Berk (1995, 1997) posits that the cross-sectional correlation between the expected payoff

and the expected return is zero, which implies that a negative correlation between price

and expected return in the cross-section is driven entirely by the cross-sectional variance in

expected returns. This position is not true in our model. To see this result, we use the

following identity derived in Berk (1995):

cov(p, r) = cov(c, r)− var(r),

where cov and var denote cross-sectional covariance and variance respectively. We can show

that cov(c, r) = −(1 − γ1)γ1σ
2(p) and var(r) = γ2

1σ
2(r).11 Thus, the ratio, cov(c,r)

−var(r)
, is γ1,

which is the ratio of noise variance over the total variance of the prior distribution of the log

intrinsic value. In our model, this ratio is 10 percent, so the negative correlation between

price and expected return in the cross-section is largely driven by the negative correlation

between expected payoff and expected return.

We also show that the high returns associated with small cap and value stocks in our

model are not attributable to the increased loading on the systematic risk factor, ft, resulting

from the interplay between the small-cap and value deciles and noise realization. In Table

3, we present the average betas for the size-value deciles. We assume that β in Equation

(3) for all stocks is equal to 1; that is, in the absence of noise all stocks have the same

exposure to the risk factor f . In the presence of noise, the beta of the price return is given

by Vt
Pt

= e∆t . The beta for a given size-value decile given in Table 3 is the average of the beta

of the size-value decile. The small-cap and value stocks have slightly higher betas because of

negative noise. Stocks in the smallest decile have a beta of 1.02, whereas those in the largest

11If we integrate out Xt from Equation (7), the expected return conditional on Pt is given by the power
P−γ1

tk . The next two equations follows straightforwardly.
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Table 3: Beta Conditional on Size and Value Deciles

Dividend-to-Price Ratio
All 1 2 3 4 5 6 7 8 9 10

All 1.004 0.952 0.972 0.983 0.992 0.999 1.007 1.015 1.024 1.035 1.057
Small-ME 1.025 0.972 0.992 1.003 1.012 1.020 1.028 1.036 1.045 1.057 1.080

ME-2 1.016 0.964 0.984 0.995 1.004 1.012 1.019 1.027 1.036 1.048 1.070
ME-3 1.012 0.960 0.980 0.991 1.000 1.007 1.015 1.023 1.032 1.043 1.066
ME-4 1.008 0.956 0.977 0.988 0.996 1.004 1.012 1.019 1.028 1.040 1.062
ME-5 1.005 0.953 0.974 0.985 0.993 1.001 1.008 1.016 1.025 1.036 1.059
ME-6 1.002 0.951 0.971 0.982 0.990 0.998 1.005 1.013 1.022 1.033 1.056
ME-7 0.999 0.948 0.968 0.979 0.987 0.995 1.002 1.010 1.019 1.030 1.052
ME-8 0.996 0.944 0.965 0.975 0.984 0.991 0.999 1.007 1.016 1.027 1.049
ME-9 0.991 0.940 0.960 0.971 0.980 0.987 0.995 1.002 1.011 1.022 1.044

Large-ME 0.983 0.932 0.952 0.963 0.971 0.979 0.986 0.994 1.003 1.014 1.036

This table presents beta of price (ME) and dividend-to-price deciles. The parameters are given by Table 1.

decile have a beta of 0.99. Similarly, stocks in the lowest dividend-to-price ratio decile have

a beta of 0.98, whereas those in the highest decile have a beta of 1.03.12

We compute the abnormal return (alpha) in Table 4. We assume an annual risk-free

return of 4 percent, which determines the market risk premium in our model. The results

are largely unaffected by this assumed risk-free rate. We can then compute the risk premium

and the alpha for each size-value decile by using the Table 3. Unsurprisingly, because the

variation in beta is small in the cross-section, the high returns for small-cap and value stocks

translate into positive alpha. Stocks in the smallest decile have an alpha of 1.67 percent,

whereas those in the largest decile have an alpha of –1.18 percent. Similarly, stocks in the

lowest dividend-to-price ratio decile have an alpha of -0.98 percent, wherea those in the

highest dividend-to-price ratio decile have an alpha of 1.47 percent. The increase in factor

loading driven by noise plays an insignificant role in explaining the size and value effects.

In short, our noise-in-price model would deliver a size effect, a value effect, a Lakonishok-

Shleifer-Vishny (1994) beta effect, and (not explored in this paper) a long-horizon reversal

12This finding is consistent Lakonishok, Shleifer, and Vishny (1994) who find that “the betas of value
portfolios with respect to the value-weighted index tend to be about 0.1 higher than the betas of the glamour
portfolios.”
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Table 4: Alpha Conditional on Size and Value Deciles

Dividend-to-Price Ratio
All 1 2 3 4 5 6 7 8 9 10

All 0.38 -4.99 -2.88 -1.76 -0.87 -0.06 0.72 1.54 2.46 3.64 5.95
Small-ME 2.55 -2.96 -0.79 0.36 1.27 2.10 2.90 3.74 4.69 5.89 8.27

ME-2 1.66 -3.77 -1.63 -0.50 0.40 1.22 2.01 2.84 3.77 4.96 7.30
ME-3 1.20 -4.20 -2.07 -0.95 -0.05 0.76 1.55 2.38 3.30 4.49 6.82
ME-4 0.84 -4.54 -2.42 -1.30 -0.40 0.40 1.19 2.01 2.94 4.12 6.44
ME-5 0.52 -4.85 -2.73 -1.61 -0.72 0.08 0.87 1.69 2.61 3.79 6.10
ME-6 0.21 -5.14 -3.03 -1.92 -1.03 -0.22 0.56 1.38 2.29 3.47 5.78
ME-7 -0.11 -5.44 -3.34 -2.23 -1.34 -0.54 0.24 1.05 1.97 3.14 5.44
ME-8 -0.46 -5.78 -3.68 -2.58 -1.69 -0.90 -0.12 0.69 1.61 2.77 5.07
ME-9 -0.91 -6.21 -4.12 -3.02 -2.13 -1.34 -0.56 0.24 1.15 2.31 4.60

Large-ME -1.76 -7.05 -4.96 -3.87 -2.99 -2.20 -1.42 -0.62 0.29 1.44 3.72

This table presents annual alpha, in percentage, of price (ME) and dividend-to-price deciles. The parameters
are given by Table 1 and the riskfree return is assumed to be 4%.

effect. With a ratio of 10 percent of noise variance over total variance, we find that each of

these effects (size, value, and beta) conform closely to empirical data.

We do not want readers to infer that we believe noise in price singularly causes these

effects. Nor do we suggest that the intrinsic values for all stocks have identical distributions.

Rather, we make these unrealistic assumptions to demonstrate that noise alone would suffice

to create the empirically observed size effect, value effect and LSV beta effect, as well as the

well-documented evidence of long-horizon mean reversion. We believe that noise in price is

an important, and perhaps dominant, contributor to these empirical phenomena.

4 Related Literature

The size and value effects have spurred spirited debates since Banz (1981) and Reinganum

(1981) documented that small-cap stocks tend to outperform on a risk-adjusted basis and

Stattman (1980) and Rosenberg and Reid and Lanstein (1985) documented that high book-

to-market ratio stocks also outperform. Similarly, other ratios such as earning-to-price

(documented by Basu (1977)) and dividend yield (documented by Razeff (1984), Shiller
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(1984), Blume (1980) and Keim (1985)) also predict future performance.

Berk (1995, 1997) points out that cross-sectional dispersion in expected return leads to

negative cross-sectional correlation between price and expected returns, in most reasonable

models, whether rational or behavioral. Thus, qualitatively predicting size and value effects

is not a distinguishing model feature. The hard work, then, lies in identifying the mechanism

for the size and value effects, matching the magnitudes to the observed levels and variations

in the cross-section of stock returns with reasonable parameters, and generating additional

intuitions and testable implications.

Fama and French (1992) show that size and value, together with market beta, capture

much of the cross-sectional variation in stock returns and subsume the explanatory powers of

other financial variables. They propose that the size and value premia are compensation for

risk. Gomes, Kogan and Zhang (2003) and Zhang (2005) explore the value effects through

irreversible investments. Bansal and Yaron (2004) argue that long run risk can be used to

explain cross-sectional patterns of stock return. Yogo (2006) proposes that the size and value

effects can be explained by investor preferences that are non-separable in nondurable and

durable consumption.

Fama and French (2007) study the pattern of decile migration amongst small-cap and

large-cap stocks and value and growth stocks, and demonstrate that this migration is an

important contributor to the size and value premia. Chen and Zhao (2008) reaches similar

conclusions. Our model predicts that mean reversion in noise leads to decile migration

and size and value premium. It remains to compute the premium associated with various

migration patterns in our model and compare them with the Fama-French findings.

Blume and Stambaugh (1983) point out that the unconditional expected return of a

stock in the presence of price noise increases with the noise volatility because of Jensen’s

inequality effect. Small-cap stocks probably have a higher noise volatility, as empirically

evidence would support, which leads to a higher expected return. Even though the Blume

and Stambaugh study is motivated by bid-ask random bounce, their results are applicable

to general noise-in-price models.
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However, for Blume and Stambaugh to generate the Fama-French table, one needs to

specify noise volatilities exogenously for 100 decile portfolios, which implies a large prolif-

eration of parameters. Finally, these noise volatilities implies unreasonable amount of price

noise. In our paper, the mechanism of Blume and Stambaugh is completely shut off by our

assuming that all stocks have the same noise volatility, thus the same unconditional expected

returns. Indeed, if we introduce a cross-sectional variation in noise volatility with size, then

an even smaller noise volatility can fully explain the observed size and value effects.

Additionally, we note that in term-structure models, where the number of shocks is

smaller than the number of independent securities, the general assumption is that the market

prices for bonds are different from their fair values by a noise.

Although the noise-in-price framework we use is simple and stylized, it is not narrow,

nor are the model implications obvious. The framework is, in fact, surprisingly rich in

its applications. Specifically, Blume and Stambaugh (1983) use a noise-in-price model to

study the effect of bid-ask bounce on expected returns. Campbell and Kyle (1993) use the

framework to explain the high volatility and predictability of U.S. stock returns. Hughes,

Liu, and Liu (2006) use the framework to explain why less transparent firms would have a

higher cost of capital after controlling for risk. Arnott (2005a, 2005b) suggests this model

as a probable key driver in the value and size effects, which this article formalizes. Hsu

(2006) uses the framework to argue that a mispricing premium may exist because there

are investors with liquidity needs. Hsu (2008) and Arnott and Hsu (2008) use the noise

model to demonstrate that a diversified capitalization-weighted portfolio is suboptimal to

any diversified non-price-weighted portfolio. Brennan and Wang (2006), using a similar

framework, study the effect of mispricing on unconditional expected returns for a larger

class of pricing models.

The behavioral finance literature finds that size and value effect can also be generated

from investor overreaction or under-reaction, as suggested by Shiller (1981), DeBondt and

Thaler (1985, 1987), and Lakonishok, Shleifer and Vishny (1994), Barberis, Shleifer, and

Vishny (1998) and Daniel, Hirshleifer, and Subrahmanyam (1998), among others.
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In our model, abnormal returns can be earned by exploiting size and value as signals for

undervaluation. They are arguably two sides of the same coin. Summers (1986) argues that

“data in conjunction with current [econometric] methods provide no evidence against the

view that financial market prices deviate widely and frequently from rational valuations.”

Fama and French (1988) and Poterba and Summers (1988) study mean reversion in prices

and posit that one possible explanation is mean-reverting price noise. Black (1986) argues

that noise should always be present because investors are risk averse and are not sure whether

a free lunch is truly a free lunch. According to Black, “noise creates the opportunities to

trade profitably, but at the same time makes it difficult to trade profitably.” If Black is right,

size and value effects are likely to continue to persist.

5 Conclusion

We use a classic noise-in-price model to produce new insight into the role of price noise as a

source for cross-sectional variations in expected returns. Even with no variation in uncon-

ditional expected returns (thus the mechanism studied by Blume and Stambaugh (1983) is

switched off), small-cap and value stocks have higher expected returns because they are more

likely to be undervalued as a result of negative price shocks. With only one parameter that

is not measured directly from the data (noise volatility, which is assumed to 10% per year),

we calculate a table of expected returns conditional on size and value deciles, which match

quantitatively the table of empirical cross-sectional returns reported in Fama and French

(1992). Our results suggest that a modest amount of noise can explain the entire size and

value premia.

We emphasize that the variation in expected returns is completely due to variation in

noise realization, not variation in noise volatility. This feature not only makes the model

parsimonious but also is key to producing large size and value premium. To the best of

our knowledge, this is the first paper that theoretically computes13 and matches quantita-

13In other studies, the Fama-French table is generated by simulate and matched qualitatively, presumably
because of model complexity.
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tively Table V of Fama-French (1992). This is possible, in part, because we have a simple

mechanism and tractable model with only five parameters.

In this paper, we assumed that the ex ante distributions for all stocks are identical

and used noise realization to generate the size and value premia in the cross-section. We

deliberately make this unrealistic assumption to demonstrate that the random realization of

noise alone can generate sufficient cross-sectional variation to match the data. Introducing

differences in ex ante distributions would introduce more variations in the cross-section of

expected returns and would allow us to match the emprical evidence with even less noise

volatility.

We can extend our model in some directions without losing tractability. For example,

we can allow the noise process to be an AR(1) process instead of i.i.d. Empirical studies

document that the size and value premiums in booms are different from those in recessions.

In our paper, we can introduce a dependence of the conditional variance of noise on macroe-

conomic state variables. This condition can then generate a business cycle pattern in the

size and value effects.

In short, a moderate amount of noise in price, which is perhaps too small to discern

statistically, conforming to Summers (1986), can help explain empirical regularities like the

size and value premia in stock returns and also offer extensive opportunities for further

research.
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Appendix

The following lemma is a special case studied in Liptser and Shiryaev (1977).

Lemma 1 Suppose that θ is a vector of normal random variables with mean vector θ̄ and
variance-covariance matrix Σθ. Furthermore, a vector of random variables ξ satisfies

ξ = A0 + A1θ +Bε,

where ε is a vector of standard normal random variables that are independent of θ. Assume
that A1ΣθA

′
1 + BB′ is invertible. Then, mean vector E[θ|ξ] of θ conditional on ξ and the

variance-covariance matrix Σθ|ξ conditional on ξ are

E[θ|ξ] = θ̄ + ΣθA
′
1(A1ΣθA

′
1 +BB′)−1(ξ − A0 − A1θ̄)

and
Σθ|ξ = Σθ − ΣθA

′
1(A1ΣθA

′
1 +BB′)−1A1Σθ.

We will apply this lemma repeatedly. In our applications, θ will be the noise ∆t, ξ will be

the price pt or the price-to-dividend ratio pt − dt, and ε will be the other random variables,

such as εrt (or ft later).

Proof of Proposition 1

Under the assumption of Proposition 1, we have

E[e∆kt+1−∆kt ] = E[e∆kt ]E[eσε∆εkt+1 ] = e
σ2
ε∆
2 e

σ2
ε∆
2 = eσ

2
ε∆ ;

E[e∆kt ]E

[
1

e∆kt

]
= e

σ2
ε∆

1−ρ2 ,

where σ2
ε∆

is the unconditional variance of ∆kt. Because eσ
2
ε∆ ≥ 1 and eσ

2
ε∆ ≥ 1, we conclude

that E
[
Pkt+1+Dkt+1

Pkt

]
≥ E

[
Vkt+1+Dkt+1

Vkt

]
. Equation (6) is proved by noting that

E

[
Vkt+1

Vkt

]
= eµ+ 1

2
σ2
r ;

E

[
Dkt+1

Vkt

]
= E

[
Vkt+1

Vkt

]
E

[
Dkt+1

Vkt+1

]
= eµ+ 1

2
σ2
re−x̄v+

σ2
εx
2 .
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Proof of Proposition 2

At time t, we have two signals on ∆kt:

pkt = vkt + ∆kt − ln(E[e∆kt ]);

xkt = (vkt − dkt) + ∆kt − ln(E[e∆kt ]).

Note that vkt, vkt − dkt, and ∆kt have a normal distribution with mean (v̄t, x̄v, 0) and a

diagonal covariance matrix with diagonal covariance matrix elements of
(
σ2
vt, σ

2
εx , σ

2
ε∆

)
. We

can express the above equation as

pkt − v̄kt + ln(E[e∆kt ]) = (vkt − v̄kt) + ∆kt;

xkt − x̄ = (vkt − dkt − x̄v) + ∆kt.

Therefore, conditional on pkt and xkt, the mean of ∆kt is

1
σ2
vt

(pkt − p̄kt) + 1
σ2
εx

(xkt − x̄)

1
σ2
vt

+ 1
σ2
εx

+ 1
σ2
ε∆

and the variance is
1

1
σ2
vt

+ 1
σ2
εx

+ 1
σ2
ε∆

.

Thus,

E
[
e−∆kt|pkt, xkt

]
= e

−
1
σ2
vt

(pkt−p̄kt)+
1
σ2
εx

(xkt−x̄)

1
σ2
vt

+ 1
σ2
εx

+ 1
σ2
ε∆ e

1

2

 1
σ2
vt

+ 1
σ2
εx

+ 1
σ2
ε∆



= e

(
1
σ2
vt

p̄kt+
1
σ2
εx

x̄

)
+ 1

2

1
σ2
vt

+ 1
σ2
εx

+ 1
σ2
ε∆ e

−1

σ2
vt

pkt

1
σ2
vt

+ 1
σ2
εx

+ 1
σ2
ε∆ e

− 1
σ2
εx

xkt

1
σ2
vt

+ 1
σ2
εx

+ 1
σ2
ε∆ .

The first equality of the equation in the proposition is obtained by noting that

E

[
Pkt+1

Pkt
|xkt, pkt

]
= eµ+ 1

2
(σ2
r+σ2

ε∆
)E
[
e−∆kt|xkt, pkt

]
.

The second equality follows from definitions Pkt = epkt and Xkt = exkt . Note that

vkt+1 − dkt+1 = x̄v + σεxε
x
kt+1;
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E

[
Dkt+1

Pkt
|xkt
]

= E

[
Dkt+1

Vkte∆kt−ln(E[e∆kt ])
|xkt
]

= E

[
Vkt+1

Vkt
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]
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2

(σ2
r+σ2

εx
)−x̄E

[
e−∆t |pkt, xkt

]
.

Finally,

E
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Pkt
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]
= E

[
Pkt+1

Pkt
|xkt
]

+ E
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It is straightforward to evaluate the expectations in the proposition and prove the equivalence

between the above equation and the equation given in the proposition.

Proof of Proposition 3

We will denote pt = (p1t, ..., pNt)
′. In vector notation, we can write

pt = p̄t + βft + σεvt + σε∆ε
∆
t .

We can write

pt − p̄t = σε∆ε
v
t + βft + σεvt .

In terms of the notation of Lemma 1, θ = σε∆ε
e
t , θ̄ = 0, A0 = 0, A1 = I (where I is the

N -dimensional identity matrix), B = (σI, βI1), where I1 is a N × 1 vector of 1’s. Therefore,

Σθ = σ2I
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and

A1ΣθA
′
1 +BB′ = (σ2 + σ2

ε∆
)I + β2I1I

′
1.

Let D = σ2 + σ2
ε∆

and β0 = β + βe, we get

(A1ΣθA
′
1 +BB′)−1 = (σ2 + σ2

ε∆
)−1I − (σ2 + σ2

ε∆
)−2β2(1 +Nβ2(σ2 + σ2

ε∆
)−1)I1I

′
1.

An application of Lemma 1 implies that

∆̄t = ΣθA
′
1(A1Σθ0A

′
1 +BB′)−1ξ

= σ2
ε∆

(σ2 + σ2
ε∆

)−1(pt − p̄t)− σ2
ε∆

(σ2 + σ2
ε∆

)−2β2(1 +Nβ2(σ2 + σ2
ε∆

)−1)−1(pt − p̄t).

The first term corresponds to the case of β = 0.

When N → ∞, (1 + Nβ2(σ2 + σ2
ε∆

)−1)−1 → 0; thus the second term goes to zero. The

above formula reduces to the formula for the case14 of β = 0:

∆̄t = σ2
ε∆

(σ2
ε∆

+ σ2)−1(pt − p̄t).

Intuitively, each stock price is a signal on ft. With infinitely many stocks thus infinitely many

signals, the factor uncertainty is eliminated and can be ignored for inferences about noise

∆t and in the computation of the expected return conditional on prices and price ratios. We

need to consider only the case of a single stock as long as only idiosyncratic volatility σ is

used. Thus in the remainder of the proof, we will drop the subscript k for individual stock.

Now let σxt =
√

1
σ2
εx

+ 1
σ2
ε∆

. Without loss of generality, we can assume that the means of

pt and xt are zero. We need to compute

E[e−(φ1pt+φ2xt)|R1],

where R1 = {σptδi ≤ pt ≤ σptδi+1, σxtδi,j ≤ xt ≤ σxtδi,j+1}, for various φ1 and φ2. Define q

and z by the following equations:

pt =
√

1− ρ2σptq + ρσptz,

xt = σxtz.

14Note that in Proposition 2, the variance of ∆kt is σ2
ε∆ and variance of the value process vkt is σ2

vt.
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Using the fact that pt and xt have variances of σ2
pt and σ2

xt and covariance of ρσptσxt, we can

show that q and z are independent standard normals. By changing the variable from (pt, xt)

to (q, z), we get,

E[e−(φ1pt+φ2xt)|R1] = E[e−(φ1(
√

1−ρ2σptq+ρσptz)+φ2σxtz)|R2]

= E[e−φ1

√
1−ρ2σptq−(φ1ρσpt+φ2σxt)z|R2],

where R2 = {δi ≤
√

1− ρ2q + ρz ≤ δi+1, δi,j ≤ z ≤ δi,j+1}. Integrating out q, we get,

E[e−φ1

√
1−ρ2σptq−(φ1ρσpt+φ2σxt)z|R2] = e

1
2
φ2

1σ
2
pt(1−ρ2)E[e−(φ1ρσpt+φ2σxt)z(N(x1)−N(x2))|R3],

where x1 = δi+1−ρz√
1−ρ2

+ φ1

√
1− ρ2σpt, x2 = δi−ρz√

1−ρ2
+ φ1

√
1− ρ2σpt, and R3 = (δi,j, δi,j+1). We

can show that

e
1
2
φ2

1σ
2
pt(1−ρ2)E[e−(φ1ρσpt+φ2σxt)z(N(x1)−N(x2))|R3]

= e
1
2

(φ2
1σ

2
pt+ρφ1φ2σptσxt+φ2

2σ
2
xt)E[(N(x3)−N(x3))|R4]

= E[e−(φ1pt+φ2xt)(N(x3)−N(x4))|R4],

where x3 = δi+1−ρz+(φ2ρσxt+φ1σpt)√
1−ρ2

, x4 = δi−ρz+(φ2ρσxt+φ1σpt)√
1−ρ2

, andR4 = (δj+φ1ρσpt+φ2σxt, δj+1+

φ1ρσpt + φ2σxt). Noting that e
1
2

(φ2
1σ

2
pt+ρφ1φ2σptσxt+φ2

2σ
2
xt)E[= E[e−(φ1pt+φ2xt)], we get

E[e−(φ1pt+φ2xt)|R1] = E[e−(φ1pt+φ2xt)]E[(N(x3)−N(x4))|R4].

The proposition is proved by noting that the expected value of e−(φ1pt+φ2xt) conditional on

R1 is E[e−(φ1pt+φ2xt)|R1] divided by the probability of R1, which is 0.01.
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